
Open Source Python GIS Hacks Page: 1

Intro to Python 6/16/2005

Introduction to Python

You need a quickie refresher on Python to get started.

Python’s reputation precedes it. You’ve probably heard that is Python an

interpreted language, that it has significant whitespace (which some find

repulsive), and that it powers some of the most well known websites and

computing systems in the world.

You may have heard that Python runs slow (true in certain circumstances). It

doesn’t support this or that programming construct (it might eventually if it is

worthy enough). Every language has its warts, but Python is one of the few

languages that both trusts and puts the developer first. By trust, I mean that

Python doesn’t cut off your nose to spite your face. You generally won’t find

yourself jumping through hoops to make the language do what you want. It

doesn’t put you in a padded room to protect you from yourself (although it

doesn’t dangle you from a cliff like C can either).

By putting the developer first, I mean that Python puts your productivity first.

The key insight that the Python developers had (Guido in particular) is that a

developer spends most of his/her time reading code, not writing it. Getting up to

speed with someone else’s (and your own if you’ve been away from it for awhile)

code is easy because all of the stylistic choices have been made for you (no

arguing about brace styles, indenting, and function layout). This frees the

developer to focus on good code that does what it is supposed to, not extraneous

details that don’t matter much in the end.

Enough proselytizing. Let’s do some Python. Start by opening up ActiveState

Python by choosing Start – Programs – ActiveState ActivePython 2.4 –

Pythonwin IDE. The Python interpreter will open up in a document window.

1 PythonWin 2.4.1 (#65, Mar 30 2005, 09:33:37) [MSC v.1310 32 bit
(Intel)] on win32.Portions Copyright 1994-2004 Mark Hammond
(mhammond@skippinet.com.au) - see 'Help/About PythonWin' for further
copyright information.

2 >>>

The interpreter is the thing that runs your program. It combines the process of

compiling and running your code at the same time. You can run a Python

program in two ways – by opening up an interpreter and running it interactively,

or by calling the interpreter to run a program in a non-interactive mode (in the

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2

Intro to Python 6/16/2005

background).

We’ll start with the ubiquitous “Hello World.”

3 >>> print "Hello World"
4 Hello World

Data Types

Here is some example code that demonstrates the three ultra-basic data types

that you’ll need when working with Python.

5 >>> an_integer = 3
6 >>> an_integer
7 3
8 >>> a_float = 3.0
9 >>> a_float
103.0
11>>> a_string = '3.0'
12>>> a_string
13'3.0'
14>>> an_integer + a_float
156.0
16>>> an_integer + an_integer
176
18>>> a_string + a_float
19Traceback (most recent call last):
20 File "<stdin>", line 1, in ?
21TypeError: cannot concatenate 'str' and 'float' objects

Notice that attempting to add the string and float throws an exception called

TypeError. This error was thrown because Python can’t automatically coerce the

objects of type string and float. We can cast the string object into a float by

calling the float() method on it.

22>>> float(a_string) + a_float
236.0

Of course, if the string is really text and not numeric, the float() method method

will throw an exception complaining about it.

24>>> float('a')
25Traceback (most recent call last):
26 File "<stdin>", line 1, in ?
27ValueError: invalid literal for float(): a

Data Structures

Next, we’ll cover the three basic data structures that you’ll find when working

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3

Intro to Python 6/16/2005

with Python programs.

The first is a list. A list is your basic, integer indexed-based data structure.

28>>> a_list = ['a','b','c']
29>>> another_list = ['3', 3, 3.0]

Notice that another_list has objects of type string, integer, and float. Lists (actually

all of the data structures) can contain objects of heterogeneous type.

The second is a dictionary, or hash table. A dictionary is used when you want to

be able to access something by key, rather than by index alone. Use a dictionary

when you want to search through a large group of things, rather than interating

through a list and testing each member. Also thing to note is that a dictionary’s

keys are always strings (or hashable objects) and that duplicates are not allowed

(you can’t have two items in a dictionary with the key ‘a’ for example).

30>>> a_dictionary = {'a':1, 'b':2, 'c':3}
31>>> a_dictionary['a']
321

The third major data type is the tuple. A tuple is just like a list, except that it

cannot have items added or removed from it once it is instantiated. One way to

think of a tuple is as a “read-only” type of list.

33>>> a_tuple = ('a','b','c')

Conditionals

Decisions, decisions, decisions… a program isn’t really a program unless you can

alter an operation based on some input. You universally do this with a

conditional statement. In Python, as with many languages, this is done using an

if…else construct.

34a_string = 'a'
35if a_string == 'a':
36 print 'it was a'
37else:
38 print 'it was not a'
39
40it was a
41if a_string == 'a':
42 print 'it was a'
43elif a_string == 'b':
44 print 'it was b'
45else:
46 print 'it was neither'

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Intro to Python 6/16/2005

47
48it was a

Notice that the print statements are indented underneath the conditional

statements. Python denotes code blocks with indentation, rather than using

curly braces or some other punctuation. As long as the code blocks are all evenly

indented, it will work. The convention is to use 4 spaces for indenting each code

block, and usually great care is taken to not mix in tabs and spaces to make it

easy to send code around the internet – compensating for the various system and

tab stops that might be out there.

Another important item to note here is that = is different than ==. One equals

sign is for assignment and two equals signs are for comparison. For example, this

code snippet isn’t going to do what you’d hoped for.

49>>> if a_string = 'b':
50 File "<stdin>", line 1
51 if a_string = 'b':
52 ^
53SyntaxError: invalid syntax

Loops

Computers are computers because they can do things a lot of times in a row and

they don’t complain about it. There are two ways to do a lot of things in a row in

Python. The first is a for loop and the second is a while loop.

54for item in a_list:
55 print 'lowercase: ', item, 'uppercase: ', item.upper()
56lowercase: a uppercase: A
57lowercase: b uppercase: B
58lowercase: c uppercase: C

Another way of printing the results is to use string interpolation. The string

substitution syntax is very similar to the printf substitution in C. If you find

yourself adding a lot of strings together into one larger one, use string

interpolation instead of the + operator. It will make things easier to read and

easier to change.

59for item in a_list:
60 print 'lowercase: %s uppercase:%s'% (item, item.upper())

Functions

Functions allow you to consolidate operations, eliminate code redundancy, and

clean up your code. Unlike other languages, functions in Python rely on

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Intro to Python 6/16/2005

something that is casually called “duck typing.” Duck typing means “if it acts

like a duck and quacks like a duck, we’ll treat it like a duck.” As long as the

object passed into the function has the proper attributes and/or methods, the

function will happily call and work with it.

61def print_it(astring):
62 print astring
63>>> print_it('Howard')
64Howard

A function is started with a def for define. Then comes the name and the list of

parameters inside of parenthesis. Our print_it function takes a single parameter,

astring, and prints it.

You can also define default arguments in function. This is commonly done to

reduce line noise in the code and allow flexibility.

65def print_it_two(astring, salutation="Mr."):
66 print salutation, astring
67>>> print_it_two('Howard Butler')
68Mr. Howard Butler
69>>> print_it_two('Cunningham', salutation="Mrs.")
70Mrs. Cunningham

Objects

In Python, everything is an object. This includes things like functions, class

definitions, and code itself. All of this object stuff doesn’t mean that you have to

program in an object-oriented way (unlike some languages like Ruby, for

example). You can still write a straight-ahead, linear program that manipulates

some text, or a module that is just a bunch of functions that are called in a specific

order.

Even though you aren’t required to program in an object-oriented way, it is

helpful to understand how to use objects in Python. All of the code that you’ll

import and use, including stuff from the standard library, is arranged in objects.

I find it helpful when working with object-oriented code to think of verbs.

Objects have things, objects are things, and objects do things.

Have

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6

Intro to Python 6/16/2005

When we say that objects have things, we mean that we use objects to carry

data. You will hear the words property and attribute to describe this. There

are slight differences between a property and an attribute of an object, but

in Python, for the most part, you shouldn’t have to care. Just remember

when someone says that an object has something, they are referring to the

data that it carries.

Are

When we say that objects are things, we mean that an object is of some type.

A type might sometimes be coerced into another type, or it might inherit

attributes and methods from a parent type (called a subclass or subtype).

Do

When we say that objects do things, we mean that we use objects to perform

an action on data. You will hear the words method or function to describe

this. It might perform this action on or using one of its own attributes or

data that you give it to act on.

You define an object by using the class keyword.

71class Bear:
72 def __init__(self, name='Yogi'):
73 self.name = name
74 def growl(self):
75 print 'grrrr'
76 def eat(self, food):
77 print self.name, 'eats', food
78 def __str__(self):
79 return 'My name is %s' % (self.name)

The first thing we do is define an __init__ method. __init__ is a special or

“magic” method in Python in which we define the data the class will carry along

with it (or have). Note the use of a default method, with the Bear’s name

defaulting to Yogi. The __str__ method defines what is returned when we try to

get a string representation of the Bear. In our case, we just return a string that

reports the Bear’s name…

growl and eat are methods that define something that the Bear class does.

80>>> yogi = Bear()
81>>> yogi.eat('tomatoes')

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7

Intro to Python 6/16/2005

82Yogi eats tomatoes
83>>> yogi = Bear()
84>>> yogi.eat('tomatoes')
85Yogi eats tomatoes
86>>> print yogi
87My name is Yogi
88>>> yogi.growl()
89grrrr

We can find out more about what yogi is by asking its type with the type()

function.

90>>> type(yogi)
91<type 'instance'>

And we can check what type it is by comparing it to its class.

92>>> isinstance(yogi, Bear)
93True

Modules and Packages

Python Module

A module is a file containing Python statements with a .py extension. Modules

are used to reduce the amount of typing you do at the interpreter prompt, and,

of course, to reuse code in different applications.

For example, with an editor create a new file called wkt.py in your current

directory and type into it the following:

def wktpoint(x, y):

 return 'POINT (%f %f)' % (x, y)

This defines a function which takes a coordinate in the form of two floats,

interpolates the coordinate values into a well-known text representation of a

point, and returns this string.

The module is loaded using a Python import statement

>>> import wkt

dropping the .py extension, and afterwards the function is callable using :

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 8

Intro to Python 6/16/2005

>>> wkt.wktpoint(1, 2)

'POINT (1.000000 2.000000)'

>>>

Notice that after you import the wkt module, your current directory now

contains a wkt.pyc file. This is the module as compiled bytecode, and speeds up

the next import of the module. The Python interpreter compares the timestamps

on the compiled and source module so that it is recompiled whenever the source

has been changed.

Module Search Path

Note that we didn't specify any path to the wkt module. How is it found? By

default Python will search for files in the following directory order:

1. current directory (interpreter prompt) or directory of the input script

2. directories specified in the PYTHONPATH environment variable

3. installation-dependent system paths, such as c:\python24\lib for the

library of standard modules and c:\python24\lib\site-packages for

installed non-standard modules.

The PYTHONPATH variable is useful with uninstalled bundles such FWTools.

The dir() function

The built-in dir() function returns a sorted list of the names defined in a module.

This is all names: variables, functions, classes. Using our wkt.py as an example:

>>> import wk

>>> dir(wkt)

['__builtins__', '__doc__', '__file__', '__name__',
'wktpoint']

>>>

The first four names are common to all modules and then there is our wktpoint

function.

Finding Module Constants

A module is a great place to keep constants, and all of our GIS modules define a

few. If you want to see all the mapscript integer constants and their values:

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 9

Intro to Python 6/16/2005

>>> from mapscript import mapscript

>>> [(n, eval('mapscript.%s' % (n))) \

... for n in dir(mapscript) \

... if type(eval('mapscript.%s' % (n))) == type(1)]

[('FTDouble', 2), ('FTInteger', 1), ('FTInvalid', 3),
('FTString', 0), ('MAX_PARAMS', 10000),

('MESSAGELENGTH', 2048), ('MS_AUTO', 9), ('MS_BITMAP', 1),
('MS_CC', 8), ('MS_CGIERR', 13), ('MS_CHILDERR', 31),
('MS_CJC_BEVEL', 1), ...]

the eval function evaluates a string as a Python expression. For example:

>>> eval('1 + 1')

2

>>>

we use it above within a Python list comprehension to generate a list of names,

filter those that have integer type values and return the name and value as a

tuple. List comprehensions are an increasingly popular Python construction. The

one above is quite complex. Here are simpler examples that build up to the same

level of complexity:

>>> [x for x in [1, 2, 3]]

[1, 2, 3]

>>> [(x, 2*x) for x in [1, 2, 3]]

[(1, 2), (2, 4), (3, 6)]

>>> [(x, 2*x) for x in [1, 2, 3] if x > 1]

[(2, 4), (3, 6)]

Packages

A package is a directory of modules and allows us to structure the module

namespace. It also allows developers to avoid module name conflicts. We can all

have our own geometry module as long as its contained within a unique

package.

Previously we imported the mapscript module from the mapscript package

>>> from mapscript import mapscript

Another example is the xml package from the standard library. Browse to

C:\Python24\Lib\xml and note that it contains, among other things, sax and

dom sub-packages. This separation is for efficiency as much as namespace

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 10

Intro to Python 6/16/2005

structure, as the SAX and DOM approaches to XML are not usually combined in

a single application, and there's no point in loading a module that won't be used.

Howard Butler and Sean Gillies Open Source Geospatial '05

 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 1

Geometry Operations: OGR and GEOS 6/16/2005

Geometry Operations: OGR and GEOS

The GEOS library

 http://geos.refractions.net

provides the spatial predicates originally used in PostGIS, now OGR, and soon

MapServer. In this exercise we'll explore unions, intersections, differences,

buffers, and work our way up to the task of creating a buffered union of many

features from a shapefile.

Matplotlib

Along the way we are going to use the matplotlib package for visualization of

our results. This is matlab-like software that is attracting a lot of attention from

Python users. If we have time at the end of the workshop, some of you may be

interested in digging deeper into matplotlib.

>>> from matplotlib import pylab

>>> pylab.plot()

[]

>>> pylab.show()

This creates an output window into which we'll render geometries.

Geometries

Let's create two simple, overlapping polygons using the same string

interpolation and WKT factory method as in the previous exercise:

>>> r1 = {'minx': -5.0, 'miny': 0.0, 'maxx': 5.0, 'maxy':
10.0}

>>> r2 = {'minx': 0.0, 'miny': -5.0, 'maxx': 10.0, 'maxy':
5.0}

>>> template = 'POLYGON ((%(minx)f %(miny)f, %(minx)f %
(maxy)f, %(maxx)f %(maxy)f, %(maxx)f %(miny)f, %(minx)f %
(miny)f))'

>>> w1 = template % r1

>>> w2 = template % r2

You could print these to verify. Next we import the ogr module and use its WKT

factory to create instances of ogr.Geometry:

>>> from gdal import ogr

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2

Geometry Operations: OGR and GEOS 6/16/2005

>>> g1 = ogr.CreateGeometryFromWkt(w1)

>>> g2 = ogr.CreateGeometryFromWkt(w2)

Plotting

Initially we downloaded a helper file named plot.py. It contains two functions

for plotting geometries in the matplotlib window.

>>> from plot import plot_poly, plot_line

>>> plot_poly(g1, color='green', alpha=0.25)

>>> plot_poly(g2, color='blue', alpha=0.25)

The result should be something like

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3

Geometry Operations: OGR and GEOS 6/16/2005

Intersection

Let's try the Intersection() and Buffer() methods of ogr.Geometry first.

>>> inter = g1.Intersection(g2)

>>> buffered_inter = inter.Buffer(0.5)

>>> plot_line(buffered_inter, color='red')

The result:

Union

Now the Union() method.

>>> union = g1.Union(g2)

>>> buffered_union = union.Buffer(1.0)

>>> plot_line(buffered_union, color='cyan')

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Geometry Operations: OGR and GEOS 6/16/2005

and the results

Lifelike Geometries

Let's close up that output window and move on to less artificial geometries. At

c:\ms4w\python\data\world_borders.shp is a world borders shapefile

derived from VMAP0 by Schuyler Erle, Rich Gibson, and Jo Walsh. We'll use the

OGRFeatureIterator class from the fiter.py helper module to select several of the

features from this shapefile:

>>> from fiter import OGRFeatureIterator

>>> filename = r'c:\ms4w\python\data\world_borders.shp'

Now, define a spatial bounding box and an OGR attribute filter to constrain

features. The GEOS Union() operation is very slow, and we don't want to wait

for too many polygons.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Geometry Operations: OGR and GEOS 6/16/2005

>>> bounds = (-10.0, 30.0, 20.0, 60.0)

>>> attrfilter = "fips_cntry = 'UK'"

Next, we create a list to hold selected features, and declare the name u, for our

union geometry, to begin with the value None.

>>> geoms = []

>>> u = None

The following iteration appends each selected geometry g and builds up the

union of all selected geometries. Iterators are a very common construct, and a big

component of Python flavor. The if/else blocks below ensure that we begin

our union geometry as the clone of a selected geometry, and clone only once.

>>> for g in OGRFeatureIterator(filename, bounds,
attrfilter):

... geoms.append(g)

... if u:

... u = u.Union(g)

... else:

... u = g.Clone()

...

>>>

Now, let's plot the selected geometries using the previously imported

plot_poly() function.

>>> for g in geoms:

... plot_poly(g, color='green', alpha=0.25)

...

>>>

the result

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6

Geometry Operations: OGR and GEOS 6/16/2005

Now, buffer the union and plot it. This is a fairly lengthy operation ...

>>> buffer = u.Buffer(1.0)

>>> plot_line(buffer, color='red')

>>>

The results

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7

Geometry Operations: OGR and GEOS 6/16/2005

Continuation

In the workshop's extra time, some of you may want to try saving these

geometries to a file using ogr.py as we did in the previous tileindex exercise, and

display them in OpenEV. Some may be interested in grabbing some features via

WFS and plotting them in the same window with the buffered UK features.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 1

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

Geocode an address and plot it on an orthophoto in the
coterminous US using MapScript

You want to use Python MapScript to geocode addresses and return a DOQ
map with the address plotted on it as a point.

Geocoding is very popular these days. Users frequently ask questions on the
MapServer list how to incorporate geocoding into existing applications.
Websites like MapQuest, Yahoo! Maps, and Google Maps have popularized the
concept of using an address as an initial map navigation tool.

The process of geocoding, or turning a street address into a longitude/latitude
pair, is a difficult one. It requires two key components – complete and
specialized data, and algorithms to turn that data into coordinates. Luckily,
Schuyler Erle of Mapping Hacks has an Open Source geocoding solution available.
Using the US Census Tiger street data, http://geocoder.us provides Perl
software and a SOAP and XMLRPC remote query mechanism for geocoding.
This means you can download your own copy of the Tiger database and provide
geocoding for your own commercial applications. (In fact, if you plan to use the
software commercially, you must build your own database rather than utilizing
the remote query interface provided by geocoder.us.)

Getting a lat/lon for an address

We will be using the remote query functionality of geocoder.us today. Start by
importing the xmlrpc library and setting up a proxy to geocoder.us’s XMLRPC
service.

1 import xmlrpclib
2 geocode_url = 'http://rpc.geocoder.us/service/xmlrpc'
3 p = xmlrpclib.ServerProxy(geocode_url)
4 address = "615 WASHINGTON AVE SOUTHEAST, MINNEAPOLIS, MN"

Next, execute a call to the XMLRPC service

5 result = p.geocode(address)
6 print result
7 C:\>geocode.py
8 [{'city': 'Minneapolis', 'prefix': '', 'suffix': 'SE', 'zip': 55455,

'number': 6
9 15, 'long': -93.229894000000002, 'state': 'MN', 'street': 'Washington',

'lat': 4
10 4.973664999999997, 'type': 'Ave'}]

Just like that, we have our coordinates. The XMLRPC service returns a list of
dictionaries that we can use to get our coordinate information. Next, we’ll
import mapscript and setup a mapObj that will draw our map.

Open Source Python GIS Hacks Page: 2

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

Generating a basic DOQ map with TerraServer and MapScript

11 try:
12 import mapscript.mapscript as mapscript
13 except ImportError:
14 import mapscript
15
16 amap = mapscript.mapObj()

Our mapObj is named amap because map is a function name in python.
Normally, you would instantiate a mapObj with an existing mapfile. In our case,
however, we want the entire thing to be self-contained in the script. We will
build up our mapObj, layerObj’s, and styling all in mapscript…

The other kind of funny thing we do here compensates for the way the mapscript
package is installed on the workshop machines. We try to import our workshop
mapscript, and if it isn’t there in the package format, we just try to import it the
regular way.

17 amap.height = 800
18 amap.width = 1100
19
20 debug = 1
21 ms_debug = 0
22
23 if ms_debug:
24 amap.debug = mapscript.MS_ON
25 amap.setProjection('init=epsg:2163')

We next define our map width and height. In addition, we define some
debugging variables. This will allow us to see and set some diagnostics as we
develop that we can easily turn off once we have a finished script. A more
sophisticated approach would utilize Python’s logging module, but this is a short
hack, right?

26 lat, lon = result[0]['lat'], result[0]['long']
27 pt = mapscript.pointObj()
28 pt.x = lon
29 pt.y = lat
30
31 if debug:
32 print '------- DD Coordinates -------'
33 print 'x: %s y: %s' % (pt.x, pt.y)
34 print '--------------------------------'

We need to take the coordinates that the geocoder gave us and turn them into a
pointObj. We’ll project that point into our mapObj’s coordinate system, use it to
define the extent of the map, and then use it to plot a point showing the location
of the address.

Open Source Python GIS Hacks Page: 3

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

35 ddproj = mapscript.projectionObj('proj=latlong,ellps=WGS84')
36 origproj = mapscript.projectionObj(amap.getProjection())
37 pt.project(ddproj,origproj)
38
39 if debug:
40 print '----- Albers Coordinates -----'
41 print 'x: %s y: %s' % (pt.x, pt.y)
42 print '--------------------------------'

Now that we’ve projected a point into our mapObj’s coordinate system, we’ll
make an extent by adding some buffer (in map units, not decimal degrees).

43 buffer = 600
44 extent = mapscript.rectObj()
45 extent.minx = pt.x - buffer
46 extent.miny = pt.y - buffer
47 extent.maxx = pt.x + buffer
48 extent.maxy = pt.y + buffer
49 amap.setExtent(extent.minx, extent.miny,
50 extent.maxx, extent.maxy)

The last few mapObj properties we need to set have to do with the output format
and giving the webObj a place to store temporarily downloaded WMS requests.

51 outputformat = mapscript.outputFormatObj('GD/JPEG')
52 amap.setOutputFormat(outputformat)
53
54 amap.web.imagepath = os.environ['TEMP']

Now that we have a mapObj, we create a layerObj to describe the TerraServer
WMS connection. The gotchas here to remember are to make sure you set
metadata for the wms_srs and wms_title and make sure to set the projection of the
layer to EPSG 4326.

55 layer = mapscript.layerObj(amap)
56 layer.connectiontype = mapscript.MS_WMS
57 layer.type = mapscript.MS_LAYER_RASTER
58 layer.metadata.set('wms_srs','EPSG:4326')
59 layer.metadata.set("wms_title", "USGS Digital Ortho-Quadrangles")
60 ts_url =

"http://terraservice.net/ogcmap.ashx?VERSION=1.1.1&SERVICE=wms&LAYERS=DOQ&F
ORMAT=jpeg&styles="

61 layer.connection = ts_url
62 layer.setProjection('init=epsg:4326')
63 layer.status = mapscript.MS_ON

Currently, we have a map with only a black and white orthophoto from
TerraServer, centered on the latitiude/longitude point that geocoder.us returned
to us. Pretty boring, I admit.

Open Source Python GIS Hacks Page: 4

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

64 img = amap.draw()
65 f = open(r'c:\foo.jpg','wb')
66 f.write(img.getBytes())
67 f.close()

Symbology

MapScript doesn’t currently support the ability to add a FontSet using only
MapScript…it needs a mapObj that was defined from a mapfile to do that. This
ability will be added in the near future. Because we’re attempting to build a map
with no mapfile, we’ll instead use a pixelmap as our symbol. We won’t use one
on our local machine, however – we’ll use urllib2 and StringIO to download and
save our pixelmap symbol and dynamically incorporate it in our map.

I googled for a house symbol on Google’s image search. I found one at
http://www.worldcommunitygrid.org/images/agent/house.jpg, but you could
substitute any URL to a small jpg that you wanted. Next, we’ll download the
image and stuff it into a cStringIO instance. This will allow MapScript’s image
reading machinery to treat it as it would any normal file.

68 url = 'http://www.worldcommunitygrid.org/images/agent/house.jpg'
69 f = urllib2.urlopen(url).read()
70 f = cStringIO.StringIO(f)

The next bits were cribbed from
http://ms.gis.umn.edu/docs/howto/mapscript_imagery. We create a new
symbol, set it to type MS_SYMBOL_PIXMAP, give the symbol the imagery, and
append it to the mapObj’s symbolset.

71 symbol = mapscript.symbolObj('from_img')
72 symbol.type = mapscript.MS_SYMBOL_PIXMAP
73 img = mapscript.imageObj(f)
74 symbol.setImage(img)
75 symbol_index = amap.symbolset.appendSymbol(symbol)

With the symbol in hand, we can now go through the process of creating a point
and a MS_INLINE layer to place our house pixelmap on the map. We first have
to build up a shapeObj. shapeObjs are composed of lineObjs, which themselves
are composed of points.

76 line = mapscript.lineObj()
77 line.add(pt)
78 shape=mapscript.shapeObj(mapscript.MS_SHAPE_POINT)
79 shape.add(line)
80 shape.setBounds()

Now that we have our shapeObj, we can build up an inline layer, add our point
to it, and set some properties on the layer.

Open Source Python GIS Hacks Page: 5

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

81 inline_layer = mapscript.layerObj(amap)
82 inline_layer.addFeature(shape)
83 inline_layer.setProjection(amap.getProjection())
84 inline_layer.name = "housept"
85 inline_layer.type = mapscript.MS_LAYER_POINT
86 inline_layer.connectiontype=mapscript.MS_INLINE
87 inline_layer.status = mapscript.MS_ON
88 inline_layer.transparency = mapscript.MS_GD_ALPHA

With our layer built, we can add our symbology to it. Notice we create a
classObj on the inline layer, give it a name, and then create a styleObj that points
to our symbol. This is the preferred way of doing styling in MapScript (styleObjs
inside of classObjs) instead of merely putting the symbology on the classObj.

89 cls = mapscript.classObj(inline_layer)
90 cls.name='classname'
91 style = mapscript.styleObj(cls)
92 style.symbol = amap.symbolset.index('from_img')

Finally, draw our map again and save it to a temporary file.

93 img = amap.draw()
94
95 f = open(r'c:\temp\foo.jpg','wb')
96 f.write(img.getBytes())
97 f.close()

Figure 1. Our final output.

Open Source Python GIS Hacks Page: 6

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

Code Listing

1 # --
2 # Geocoding and MapScript
3 # (c) 2005 Howard Butler
4 # hobu@iastate.edu
5 # --
6
7 import os
8 import xmlrpclib
9
10 # geocode our address
11 geocode_url = 'http://rpc.geocoder.us/service/xmlrpc'
12 p = xmlrpclib.ServerProxy(geocode_url)
13 address = "615 WASHINGTON AVE SOUTHEAST, MINNEAPOLIS, MN"
14
15 result = p.geocode(address)
16 print result
17
18 # import mapscript as package first ... then the regular way
19 try:
20 import mapscript.mapscript as mapscript
21 except ImportError:
22 import mapscript
23
24 amap = mapscript.mapObj()
25
26 amap.height = 800
27 amap.width = 1100
28
29 debug = 1
30 ms_debug = 0
31
32 if debug:
33 print
34 print '------- Address --------'
35 print '%s' % address
36 print '-------------------------'
37
38 if ms_debug:
39 amap.debug = mapscript.MS_ON
40
41 # set projection to US laea
42 amap.setProjection('init=epsg:2163')
43
44 # grab the first address geocoder.us gives back to us
45 # and turn it into a pointObj
46 lat, lon = result[0]['lat'], result[0]['long']
47 pt = mapscript.pointObj()
48 pt.x = lon
49 pt.y = lat

Open Source Python GIS Hacks Page: 7

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

50
51 if debug:
52 print '------- DD Coordinates -------'
53 print 'x: %s y: %s' % (pt.x, pt.y)
54 print '--------------------------------'
55
56 # project our point into the mapObj's projection
57 ddproj = mapscript.projectionObj('proj=latlong,ellps=WGS84')
58 origproj = mapscript.projectionObj(amap.getProjection())
59 pt.project(ddproj,origproj)
60
61 if debug:
62 print '----- Albers Coordinates -----'
63 print 'x: %s y: %s' % (pt.x, pt.y)
64 print '--------------------------------'
65
66 # create an extent for our mapObj by buffering our projected
67 # point by the buffer distance. Then set the mapObj's extent.
68 buffer = 600
69 extent = mapscript.rectObj()
70 extent.minx = pt.x - buffer
71 extent.miny = pt.y - buffer
72 extent.maxx = pt.x + buffer
73 extent.maxy = pt.y + buffer
74 amap.setExtent(extent.minx, extent.miny,
75 extent.maxx, extent.maxy)
76
77 # set the output format to jpeg
78 outputformat = mapscript.outputFormatObj('GD/JPEG')
79 amap.setOutputFormat(outputformat)
80
81 # give the WMS client a place to put temp files
82 amap.web.imagepath = os.environ['TEMP']
83
84 # define the TerraServer WMS layer
85 layer = mapscript.layerObj(amap)
86 layer.connectiontype = mapscript.MS_WMS
87 layer.type = mapscript.MS_LAYER_RASTER
88 layer.metadata.set('wms_srs','EPSG:4326')
89 layer.metadata.set("wms_title", "USGS Digital Ortho-Quadrangles")
90 ts_url =

"http://terraservice.net/ogcmap.ashx?VERSION=1.1.1&SERVICE=wms&LAYERS=DOQ&F
ORMAT=jpeg&styles="

91 layer.connection = ts_url
92 layer.setProjection('init=epsg:4326')
93 layer.status = mapscript.MS_ON
94 if ms_debug:
95 layer.debug = mapscript.MS_ON
96
97 # import the libraries we'll need to make our pixelmap symbol
98 import urllib2

Open Source Python GIS Hacks Page: 8

Geocoding 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
 Minneapolis, MN

99 import cStringIO
100
101 # get a jpeg image from somewhere on the web and read it into
102 # a StringIO.
103 url = 'http://www.worldcommunitygrid.org/images/agent/house.jpg'
104 f = urllib2.urlopen(url).read()
105 f = cStringIO.StringIO(f)
106
107 # create the symbol using the image
108 symbol = mapscript.symbolObj('from_img')
109 symbol.type = mapscript.MS_SYMBOL_PIXMAP
110 img = mapscript.imageObj(f)
111 symbol.setImage(img)
112 symbol_index = amap.symbolset.appendSymbol(symbol)
113
114 # create a shapeObj out of our address point so we can
115 # add it to the map.
116 line = mapscript.lineObj()
117 line.add(pt)
118 shape=mapscript.shapeObj(mapscript.MS_SHAPE_POINT)
119 shape.add(line)
120 shape.setBounds()
121
122 # create our inline layer that holds our address point
123 inline_layer = mapscript.layerObj(amap)
124 inline_layer.addFeature(shape)
125 inline_layer.setProjection(amap.getProjection())
126 inline_layer.name = "housept"
127 inline_layer.type = mapscript.MS_LAYER_POINT
128 inline_layer.connectiontype=mapscript.MS_INLINE
129 inline_layer.status = mapscript.MS_ON
130 inline_layer.transparency = mapscript.MS_GD_ALPHA
131
132 # add the image symbol we defined above to the inline
133 # layer.
134 cls = mapscript.classObj(inline_layer)
135 cls.name='classname'
136 style = mapscript.styleObj(cls)
137 style.symbol = amap.symbolset.index('from_img')
138
139 # draw the map and save it somewhere.
140 img = amap.draw()
141 f = open(r'c:\temp\foo.jpg','wb')
142 f.write(img.getBytes())
143 f.close()

Open Source Python GIS Hacks Page: 1

Raster Data Aggregation 6/16/2005

Creating Aggregate Rasters for MapServer or GDAL

MapServer tileindex and GDAL VRT

Tileindexes

Although the gdaltindex utility meets the needs of most users, creating a

tileindex shapefile is a good introduction to gdal.py. It can also be useful to have

a tileindex file with more attributes for reuse in your map.

os.path

The os.path module implements functions on pathnames. Create a new text file

in your working directory named hobu.txt. No contents are needed. We'll use

this file to explore os.path.

The abspath function returns the absolute path given a relative path.

>>> import os.path

>>> os.path.abspath('./hobu.txt')

'P:\\OSG05\\aggregation\\hobu.txt'

>>>

The basename function returns the filename with all directories stripped from

the path.

>>> os.path.basename('P:\OSG05\aggregation\hobu.txt')

'hobu.txt'

>>>

the getctime function returns the file creation time in seconds past the epoch

>>> os.path.getctime('hobu.txt')

1118386365

>>>

glob

Just like a shell glob. glob.glob returns a possibly empty list of paths that

match the input pattern:

>>> import glob

>>> glob.glob('*.txt')

['hobu.txt']

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2

Raster Data Aggregation 6/16/2005

>>>

Putting it together

Now we'll combine these to print information about a batch of files:

>>> for path in glob.glob('*.txt'):

... print os.path.basename(path), \

... os.path.abspath(path), \

... os.path.getctime(path)

...

hobu.txt P:\OSG05\aggregation\hobu.txt 1118386365

>>>

And now we'll try this on the workshop raster data. Replace the pattern below

with the path to the workshop data:

>>> paths = glob.glob('P:\OSG05\python-tests\data*.tif')

>>> for path in paths:

... print os.path.basename(path), \

... os.path.abspath(path), \

... os.path.getctime(path)

...

escalante30_zip.tif P:\OSG05\python-
tests\data\escalante30_zip.tif 1044213876

mtnwest_zip.tif P:\OSG05\python-tests\data\mtnwest_zip.tif
1044212332

waterpocket30_zip.tif P:\OSG05\python-
tests\data\waterpocket30_zip.tif 104421366

6

zion30_zip.tif P:\OSG05\python-tests\data\zion30_zip.tif
1044211340

cameron30_zip.tif P:\OSG05\python-
tests\data\cameron30_zip.tif 1044129070

wasatch30_zip.tif P:\OSG05\python-
tests\data\wasatch30_zip.tif 1044129100

>>>

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3

Raster Data Aggregation 6/16/2005

gdal

OK, so we can obtain all kinds of OS info about the raster data. Now we'll get to

the the important geo properties using GDAL's gdal Python module.

In the following steps, don't bother with typing the paths. Type the leading

quotation mark, drag the file from the file explorer to the interpreter, and the

close the quotes.

Let's open one of the workshop raster files in the default read-only mode:

>>> from gdal import gdal

>>> dataset = gdal.Open('P:\OSG05\python-
tests\data\cameron30_zip.tif')

>>> dataset

<gdal.gdal.Dataset instance at 0x008E48C8>

>>>

The gdal module is extensive. In this exercise we're going to limit ourselves to

the following attributes of a Dataset:

>>> dataset.RasterCount

3

>>> dataset.RasterXSize

999

>>> dataset.RasterYSize

1586

>>> dataset.GetGeoTransform()

(-106.05969999999999, 0.00027777777777799998, 0.0,
40.842500000000001, 0.0, -0.0

0027769230769199998)

>>>

These are the number of bands, the number of pixels and lines, and the geo

transform parameters. The elements at indexes 0 and 1 of this tuple are the upper

left x value and the x pixel size. The elements at indexes 3 and 5 are the upper left

y value and -1 times the y pixel size.

Let's use these properties and methods to compute the bounding boxes for our

raster data files:

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Raster Data Aggregation 6/16/2005

>>> paths = glob.glob('P:\OSG05\python-tests\data*.tif'):

>>> for path in paths:

... ds = gdal.Open(path)

... geo = ds.GetGeoTransform()

... pixels = ds.RasterXSize

... lines = ds.RasterYSize

... minx = geo[0]

... maxx = minx + pixels * geo[1]

... maxy = geo[3]

... miny = maxy + lines * geo[5]

... print os.path.basename(path), (minx, miny, maxx,
maxy)

...

escalante30_zip.tif (-111.705, 37.686388888056207,
-111.22944443999971, 38.06583

3333055551)

mtnwest_zip.tif (-115.5, 36.50000000000022,
-103.50000000000048, 42.0)

waterpocket30_zip.tif (-111.28472222194445,
37.298055554999578, -110.72666665999

982, 38.340000000000003)

zion30_zip.tif (-113.21111111, 37.106111111111382,
-112.74444443999984, 37.63166

6666111109)

cameron30_zip.tif (-106.05969999999999,
40.402080000000488, -105.78219999999978,

 40.842500000000001)

wasatch30_zip.tif (-111.85889999999999, 40.38999999999951,
-111.40639999999964,

40.77028)

>>>

There's no close method for a GDAL dataset. The dataset is closed at the end of

the interior block above when Python's garbage collection sweeps out the local

ds object. You might want to be explicit about it, appending

... del ds

to the end of the block.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Raster Data Aggregation 6/16/2005

ogr

That's all we need from gdal.py in order to create our raster tileindex. Now

we'll need to learn to create an output vector dataset and push features into it.

Here, in a nutshell, is creation and saving of a polygon type shapefile using

GDAL's ogr.py module:

>>> from gdal import ogr

>>> driver = ogr.GetDriverByName('ESRI Shapefile')

>>> tileindex_shp = driver.CreateDataSource
('tileindex.shp')

>>> tileindex = tileindex_shp.CreateLayer('tileindex',
geom_type=ogr.wkbPolygon)

>>> tileindex_shp.Destroy()

>>>

The Destroy method is more bark than bite. It doesn't delete the file on disk, just

closes the output stream and releases allocated memory. Look in your working

directory and you will find a shapefile – a rather pointless shapefile with no

records, no fields.

Shapefile fields

Let's address that now. Delete the three shapefile components, and repeat the

following lines. Try using your interpreter's command history.

>>> tileindex_shp = driver.CreateDataSource
('tileindex.shp')

>>> tileindex = tileindex_shp.CreateLayer('tileindex',
geom_type=ogr.wkbPolygon)

Next we'll define a string type field named 'location' and set its width to 200

characters:

>>> field = ogr.FieldDefn('location', ogr.OFTString)

>>> field.SetWidth(200)

and add this field to the layer

>>> tileindex.CreateField(field)

0

we'll leave the data source open.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6

Raster Data Aggregation 6/16/2005

Adding Features

A record in our shapefile layer is represented by ogr's Feature class. The

constructor requires a FieldDefn argument, and we obtain one from the layer

itself. The value of our single 'location' field is set using the feature's SetField

method. Note the return of the abspath function and our hobu.txt file.

>>> feature = ogr.Feature(tileindex.GetLayerDefn())

>>> feature.SetField(0, os.path.abspath('hobu.txt'))

A complete feature needs a geometry. We won't dive too deep into ogr.Geometry

yet, but will use Python's string interpolation to hack a WKT (well-known text)

string and exploit ogr's WKT geometry factory. This time we are using a Python

mapping as the object of the interpolation operator instead of a tuple as we did

earlier:

>>> wkt = 'POLYGON ((%(minx)f %(miny)f, %(minx)f %(maxy)f,
%(maxx)f %(maxy)f, %(maxx)f %(miny)f, %(minx)f %(miny)f))'

>>> wkt = wkt % {'minx': -10, 'miny': -10, 'maxx': 10,
'maxy': 10}

>>> wkt

'POLYGON ((-10.000000 -10.000000, -10.000000 10.000000,
10.000000 10.000000, 10.000000 -10.000000, -10.000000
-10.000000))'

Next we create an ogr.Geometry from this string and set the feature's geometry

from it:

>>> geom = ogr.CreateGeometryFromWkt(wkt)

>>> feature.SetGeometryDirectly(geom)

0

create a new feature in our layer based upon this one, and close the data source.

>>> tileindex.CreateFeature(feature)

0

>>> tileindex_shp.Destroy()

Open the shapefile in OpenEV to see the results.

Aside for mapscript users

The mapscript.pointObj and mapscript.rectObj classes each have magic

methods to support Python's built in str() function. Give these a quick try:

>>> from mapscript import mapscript

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7

Raster Data Aggregation 6/16/2005

>>> p = mapscript.pointObj(1, 2)

>>> str(p)

"{ 'x': 1 , 'y': 2, 'z': 0 }"

>>> r = mapscript.rectObj(-10,-10,10,10)

>>> str(r)

"{ 'minx': -10 , 'miny': -10 , 'maxx': 10 , 'maxy': 10 }"

>>>

Hey, what do you know? Looks a lot like a Python dict, and with the help of the

built in eval() function, we can turn it into a dict and interpolate the values into

a WKT string:

>>> wkt = 'POLYGON ((%(minx)f %(miny)f, %(minx)f %(maxy)f,
%(maxx)f %(maxy)f, %(maxx)f %(miny)f, %(minx)f %(miny)f))'

>>> wkt = wkt % eval(str(r))

>>> wkt

'POLYGON ((-10.000000 -10.000000, -10.000000 10.000000,
10.000000 10.000000, 10.000000 -10.000000, -10.000000
-10.000000))'

>>>

Complete tileindex script

A complete tileindexing script is included in the workshop at

c:/ms4w/apps/python/aggregation/aggtindex.py and can be run using the

accompanying aggregation.bat file. Aim it at the workshop raster files in

c:/ms4w/apps/python/python/data and check the results again in OpenEV.

Virtual Datasets

GDAL's virtual dataset, or VRT, driver is a means of (among other things)

aggregating raster data. The document at http://www.gdal.org/gdal_vrttut.html

describes how to express a virtual dataset using XML. We're going to create a

VRT that aggregates the workshop raster files, allowing them to be visualized or

processed as if they were a single dataset.

XML and Elementtree

Python has a standard XML library, and a great range of other available libraries

for parsing and writing XML. The elementtree package

http://effbot.org/zone/element-index.htm

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 8

Raster Data Aggregation 6/16/2005

is a good match for VRT's lightweight XML.

Here's a very simple example that's easy to type in the interpreter:

>>> from elementtree.ElementTree import Element,
SubElement

>>> html = Element('html')

>>> body = SubElement(html, 'body')

>>> heading = SubElement(body, 'h1')

>>> heading.text = 'Introducing ElementTree'

>>> para = SubElement(body, 'p')

>>> para.text = 'Package for manipulating hierarchical
data'

Now let's import the tostring function so that we can see how this is encoded:

>>> from elementtree.ElementTree import tostring

>>> tostring(html)

'<html><body><h1>Introducing ElementTree</h1><p>Package
for manipulating hierarchical data</p></body></html>'

On second thought, let's add some CSS to demonstrate element attributes:

>>> head = SubElement(html, 'head')

>>> style = SubElement(head, 'style')

>>> style.attrib['type'] = 'text/css'

>>> style.text = 'H1{color:red} P{color:blue}'

>>> from elementtree.ElementTree import tostring

>>> tostring(html)

'<html><body><h1>Introducing ElementTree</h1><p>Package
for manipulating hierarchical data</p></body><head><style
type="text/css">H1{color:red} P{color:blue}

</style></head></html>'

and then use the ElementTree class to write this to a file

>>> from elementtree.ElementTree import ElementTree

>>> tree = ElementTree(html)

>>> tree.write('example.html')

Open example.html in a web browser. Minus the standard preamble, it's

XHTML, and easy to generate using elementtree.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 9

Raster Data Aggregation 6/16/2005

Easy VRT

For a first example, we're going to quickly create a VRT that simply proxies a

single band of one of our workshop rasters much like in the first example on the

VRT tutorial page.

>>> from gdal import gdal

>>> ds = gdal.Open
(r'c:\ms4w\python\data\wasatch30_zip.tif')

>>> geo = ds.GetGeoTransform()

>>> pixels = ds.RasterXSize

>>> lines = ds.RasterYSize

You could print the values of these if you wanted. That's all we need from gdal,

and now we begin by creating our top level element:

>>> vrt_elem = Element('VRTDataset',

 rasterXSize=str(pixels),

 rasterYSize=str(lines))

Note that all Element attributes must be strings. Next we add a GeoTransform

SubElement and set its text node to a string representation of the raster

dataset's geotransform.

>>> geo_elem = SubElement(vrt_elem, 'GeoTransform')

>>> geo_elem.text = '%f, %f, %f, %f, %f, %f' % (geo)

Next we'll add a band element to the root

>>> band_elem = SubElement(vrt_elem, 'VRTRasterBand',
dataType='Byte', band='1')

and then take a preview of our VRT under construction

>>> tostring(vrt_elem)

'<VRTDataset rasterXSize="1629"
rasterYSize="1369"><GeoTransform>-111.858900, 0.000278,
0.000000, 40.770280, 0.000000,
-0.000278<GeoTransform><VRTRasterBand band="1"
dataType="Byte" /></VRTDataset>'

Only thing left to do is to define the source data for the band. This involves

several new levels of sub elements. Take care that they are subbed from the

proper parent element. If you mistakenly insert an element into another, you can

take advantage of the fact that all Elements are list-like and delete the sub

element at a certain index.

>>> source_elem = SubElement(band_elem, 'SimpleSource')

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 10

Raster Data Aggregation 6/16/2005

>>> filename_elem = SubElement(source_elem,
'SourceFilename', relativeToVRT='0')

>>> filename_elem.text =
r'c:\ms4w\python\data\wasatch30_zip.tif'

>>> sband_elem = SubElement(source_elem, 'SourceBand')

>>> sband_elem.text = '1'

>>> srect_elem = SubElement(source_elem, 'SrcRect',
xOff='0', yOff='0', xSize=str(pixels), ySize=str(lines))

>>> drect_elem = SubElement(source_elem, 'DstRect',
xOff='0', yOff='0', xSize=str(pixels), ySize=str(lines))

Now let's wrap this up in an ElementTree and write it to disk.

>>> vrttree = ElementTree(vrt_elem)

>>> vrttree.write('first.vrt')

This first.vrt file can be opened in OpenEV. You should see a gray scale image of

the Wasatch Range centered roughly on the Alta ski area at the head of Little

Cottonwood Canyon.

Further VRT Element Hacking

A handy feature is that our elements are entirely mutable. Set the source band to

“2” and write to a new file

>>> sband_elem.text = '2'

>>> vrttree.write('second.vrt')

repeat for the third band

>>> sband_elem.text = '3'

>>> vrttree.write('third.vrt')

Raster hackers might find this a good way to tweak pixel scaling, color tables, or

even filter kernels. See http://www.gdal.org/gdal_vrttut.html for more VRT

options.

Complete VRT Script

Finally, we return to the objective: a VRT that aggregates source rasters of a

single class (same band count, same projection, and pixel resolution). It's not

much more involved than our previous example. The VRT raster size and extents

are expanded as each input raster is read, and the individual raster data is

mapped into the aggregate output by calculating the appropriate destination

rectangle.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 11

Raster Data Aggregation 6/16/2005

The completed script is at c:/ms4w/apps/python/aggregation/aggvrt.py and can

be run using the accompanying aggregation.bat file. Aim it at the 5 workshop

raster files matching the pattern c:/ms4w/apps/python/python/data/*30*.tif ,

redirect the output to a .vrt file and check the results again in OpenEV. You

should see results like this

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 1

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Get DEM, DOQ, and SRTM data for any area of interest in
the coterminous US

You need digital elevation data and ortho imagery for any area of interest in
the coterminous US.

One approach might be the “Google” approach, ie download all of the US NED
and USGS DOQ data for the entire US, process it, and then store it. The
approach has some disadvantages, however. First, USGS updates both the NED
and DOQ data at different intervals for different parts of the country. If you
were to pre-process everything, you would only have a single “snapshot” that
was only valid for a single point it time – you want the latest and greatest data.
Second, the storage requirements for this approach are humungous. The cost of
maintaining all three datasets would be very high, and you would still have the
problem of refreshing the data.

Another, more timely approach, would be to automate the process of getting
each on demand, depend on the infrastructure that already manages them, and
use the data in whichever application needs it.

This hack will utilize three methods to request, acquire, and transfer the data.
The DEM will be “scraped” off of the USGS site, the DOQ will be requested
through TerraServer’s SOAP API, and the SRTM data will come from a
MapServer-based WCS (Web Coverage Service) source.

What you need:

• Python (obviously)
• GDAL (for projecting the DEM, and creating the output data)
• pyTerra (for requesting the DOQ from TerraServer)
• OpenEV (to view your output)
•

Some strategerizing

All three of our data types – DEM, DOQ, and SRTM – need to be saved out to
Imagine (HFA) format in the same coordinate system as the extent that we’ll
specify. Even though we’re hacking, a little object-orient design could save us
some time. One thing to notice is that each of the data types is given the same
starting point – an extent, and each has the same end point – saved to an Imagine
file.

The part that is different for each of the three data types is how the data are
actually gotten. If we create a class that can be subclassed for each of the three
types, we only have to implement the part that gets the data in each.

Open Source Python GIS Hacks Page: 2

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Figure 1. The Remote class implements the three methods – __init__, get, and
save – that each of the three data types need. We will subclass Remote for all
three and provide our own implementation of get() for each.

A smart extent object

To start, we need something that is a “smart” extent that knows how to project
itself. We will use a class to do this, and the class will take in minx, miny, maxx,
and maxy parameters on instantiation as well as an optional EPSG code telling
us which coordinate system the extent is in (defaulting to 4326). The Extent
object will provide a transform() method that can transform the extent into any
other coordinate system.

To make things a bit easier, we will make a class called SmartExtent that will
store both the forward and inverse extents to make it easy to get both the
projected and unprojected coordinates.

Figure 2. Extent and SmartExtent objects. The SmartExtent object just acts
as a container and takes care of calling the transform() method for us.

Open Source Python GIS Hacks Page: 3

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

1 class Extent(object):
2 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
3 self.epsgcode = epsgcode
4 self.minx = minx
5 self.maxx = maxx
6 self.miny = miny
7 self.maxy = maxy
8 def transform(self, target_epsg_code):
9 mins = ogr.Geometry(type=ogr.wkbPoint)
10 maxs = mins.Clone()
11
12 mins.AddPoint(self.minx, self.miny)
13 maxs.AddPoint(self.maxx, self.maxy)
14 ref = osr.SpatialReference()
15 ref.ImportFromEPSG(self.epsgcode)
16 maxs.AssignSpatialReference(ref)
17 mins.AssignSpatialReference(ref)
18 out_ref = osr.SpatialReference()
19 out_ref.ImportFromEPSG(target_epsg_code)
20 t_mins = mins.Clone()
21 t_mins.TransformTo(out_ref)
22 t_maxs = maxs.Clone()
23 t_maxs.TransformTo(out_ref)
24 ext = Extent(t_mins.GetX(), t_mins.GetY(),
25 t_maxs.GetX(), t_maxs.GetY(),
26 epsgcode = target_epsg_code)
27 return ext

We’ll use the SmartExtent object to act as a container for our transformed extents.

28 class SmartExtent(object):
29 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
30 self.epsgcode = epsgcode
31 self.forward = Extent(minx, miny, maxx, maxy, epsgcode)
32 self.inverse = self.forward.transform(4326)

Next, the instance needs to know how return the transformed (in 4326)
coordinates whenever we try to get the string representation of it (this way we
can easily substitute it into the URL for the area-of-interest query).

33 def __str__(self):
34 outstring = "%s,%s,%s,%s"
35 return outstring % (self.inverse.maxy, self.inverse.miny,
36 self.inverse.maxx, self.inverse.minx)

Some test code

37 minx = 437142.35
38 miny = 4658582.96
39 maxx = 436521.25
40 maxy = 4659253.80

Open Source Python GIS Hacks Page: 4

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

41 extent = SmartExtent(minx, miny, maxx, maxy, epsgcode=26915)
42 print extent
43 >> 42.0827943476,42.0768029037,-93.7674817555,-93.759900979

Now that we have a smart extent, we can input a bounding box in whatever
projection system we need. The advantages of doing it this way instead of just
using a simple lat/lon box are twofold. First, if we need to, we can reuse this
extent and add more smarts to it when we need to (and will for downloading the
TerraServer imagery). Second, providing the convenience of an auto-projecting
extent protects our little application from changes in requirements up the line.
That way, when your boss asks, “Can I feed this a Lambert Conformal Conic
extent instead?”, you’ll be ready for it.

The super class’s save() method

While each subclass implements its own get() method, the Remote class will be the
one implementing the save() method so that each of the three data types will
behave similarly. It also defines the __init__() method that takes in one of our
extents.

One thing to note here is that the save() method takes care to get the projection
information from the native-format files that the get() method returns. It also
makes sure that the raster is projected into the coordinate system that was given
in the extent.

44 class Remote(object):
45 def __init__(self, extent):
46 self.extent = extent
47
48 def get(self):
49 pass
50
51 def save(self, filename):
52
53 infile = self.get()
54
55 o = gdal.OpenShared(infile)
56 dst_driver = gdal.GetDriverByName('HFA')
57 outref = osr.SpatialReference()
58 outref.ImportFromEPSG(self.extent.epsgcode)
59 dst_wkt = outref.ExportToWkt()
60 inref = osr.SpatialReference()
61
62 can_import = inref.ImportFromWkt(o.GetProjection())
63 if can_import != 0:
64 inref.ImportFromEPSG(4326)
65 src_wkt = inref.ExportToWkt()
66
67

Open Source Python GIS Hacks Page: 5

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

68 gdal.CreateAndReprojectImage(o,
69 filename,
70 src_wkt = src_wkt,
71 dst_driver=dst_driver,
72 dst_wkt=dst_wkt)

Getting the DOQ

The work of getting the DOQ from TerraServer has already been done for us.
The pyTerra (http://hobu.biz/software/pyTerra/) library has a class called
TerraImage that does all of the work that we implemented in the get() method of
RemoteDEM. All we need to do is to create a get() method that does the work of
downloading the TerraServer image, setting the coordinate system to the
coordinate system (UTM zone) that TerraServer gave us, and return the filename
back to the instance so that the save() method can pick it up and reproject it into
the our coordinate system of choice.

There is one complication, however. The TerraImage class of pyTerra requires
that the UTM zone also be given with the request. Because we made the “smart”
extent, providing this won’t be too hard. The smart extent already contains the
information we need (the longitude) to calculate a UTM zone in its t_mins and
t_maxs attributes. We can use these attributes and a lookup dictionary to find
the UTM zone of the extent. If the extent crosses two UTM zones, nothing is
returned (TerraServer can’t process requests across UTM zones in a single pass
anyway).

73 class SmartExtent(object):
74 …
75 def get_zone(self):
76 zones = {10:[-126,-120],
77 11:[-120,-114],
78 12:[-114,-108],
79 13:[-108,-102],
80 14:[-102,-96],
81 15:[-96,-90],
82 16:[-90,-84],
83 17:[-84,-78],
84 18:[-78,-72],
85 19:[-72,-66],
86 20:[-66,-60]
87 }
88
89 minx = self.inverse.minx
90 maxx = self.inverse.maxx
91 for i in zones:
92 #build the epsg code
93 min,max = map(float,zones[i])
94 if minx > min and minx < max:
95 min_utmzone = 26900+i
96 if maxx > min and maxx < max:
97 max_utmzone = 26900+i

Open Source Python GIS Hacks Page: 6

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

98 if min_utmzone == max_utmzone:
99 return min_utmzone
100 else:
101 return None

In our get() method, we set all of the information needed for the TerraImage
instance and save the JPEG and worldfile into the temporary directory, open it
with GDAL, convert it to a GeoTIFF, and add the coordinate reference. The
save() method will then pick this up when reprojecting the DOQ into the
coordinate system that we defined in our extent.

102 class DOQ(Remote):
103
104 def get(self):
105 thescale = 'Scale1m' # scale of the DOQ from TS
106 thetype = 'Photo'# Photo or Topo
107
108 # a TerraImage must know its zone
109 thezone = self.extent.get_zone() - 26900
110 upperLeft = TerraImage.point(self.extent.inverse.maxy,
111 self.extent.inverse.minx)
112 lowerRight = TerraImage.point(self.extent.inverse.miny,
113 self.extent.inverse.maxx)
114
115 ti = TerraImage.TerraImage(upperLeft,
116 lowerRight,
117 thescale,
118 thetype,
119 thezone)
120 self.ti = ti
121 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.jpg'
122 self.ti.write(temp_filename)
123 self.ti.write_worldfile(temp_filename+"w")
124
125 ds = gdal.Open(temp_filename)
126 drv = gdal.GetDriverByName('GTiff')
127 tiff_filename = temp_filename.replace('.jpg','.tiff')
128 tiff_ds = drv.CreateCopy(tiff_filename, ds)
129 ref = osr.SpatialReference()
130 ref.ImportFromEPSG(self.extent.epsgcode)
131 tiff_ds.SetProjection(ref.ExportToWkt())
132
133 return tiff_filename

The usage of this class is a simple, two-line call:

134 doq = DOQ(extent)
135 doq.save(r'C:\temp\doq.img')

Open Source Python GIS Hacks Page: 7

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Getting the SRTM data

As of MapServer 4.4, support for WCS (Web Coverage Service) is available.
Whereas WMS provides a rendered map image, WCS allows a requestor to
obtain the actual raw raster data through a structured URL request. Frank
Warmerdam provides the SRTM (Shuttle Radar Topography Mission) through a
WCS service at http://maps.gdal.org . Here is an example of the “Capabilities”
request that you can use to find out more information about a WCS server – in
our case Frank’s.

136 http://maps.gdal.org/cgi-
bin/mapserv_dem?&version=1.0.0&service=WCS&request=GetCapabilities

Hitting this URL in our web browser, we can see that there is one layer, called
srtmplus_raw, which appears to have what we want.

Next, we’ll use a DescribeCoverage method to find out more information about the
layer.

137 http://maps.gdal.org/cgi-
bin/mapserv_dem?&version=1.0.0&service=WCS&request=DescribeCoverage&layer=s
rtmplus_raw

The XML listing of this request shows us that that the layer is provided in the
EPSG:4326 and EPSG:4269 coordinate systems, has an output format of
GEOTIFF_INT16, and has a resolution of 0.00833333 degrees per pixel.

With this information in hand, we have enough information to build a Python
class to do the work of downloading the image for us. We’ve already done most
of the work, however. The RemoteDEM class already defines a way to take in an
extent, and turn a temporary GDAL DataSet into a projected Imagine file.

All our RemoteSRTM class needs to define is the _save_tempfile() method. This
method needs to formulate the request, download it, and save it to a temporary
file.

138 class RemoteSRTM(RemoteDEM):
139 def get(self):
140 url = 'http://maps.gdal.org/cgi-

bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus_raw&version=1.0.0&service=
WCS&request=GetCoverage&bbox=%s&width=100&height=100&format=GEOTIFF_INT16'

141
142 extent_string = '%s,%s,%s,%s' % (self.extent.t_mins.GetX(),
143 self.extent.t_mins.GetY(),
144 self.extent.t_maxs.GetX(),
145 self.extent.t_maxs.GetY()
146)
147 url = url % extent_string
148 response = urllib2.urlopen(url)
149
150 astring = response.read()
151
152 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.tiff'

Open Source Python GIS Hacks Page: 8

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

153 fo = open(temp_filename,'wb')
154 fo.write(astring)
155 fo.close()
156 return temp_filename

USGS NED DEM

USGS provides one product of digital elevation models called the NED (National
Elevation Dataset) on their website at http://seamless.usgs.gov. The user
interface for requesting DEMs is pretty clunky, but it amounts to manually
defining an area of interest, choosing the “Download” link, waiting in a queue,
and then saving the zip file of the DEM on your local machine.

Python provides excellent capabilities for working with URLs in the standard
libraries urllib and urllib2. We can use urllib2 and cookielib (another standard
library as of Python 2.4) to simulate the user requesting an area of interest,
waiting in the queue, and saving the resulting zip file on the local file system.

We need to make a series of requests to the USGS site to simulate a user doing
the same thing. The first request asks the USGS for a session, tells the site which
area of interest we want, and returns us the session cookie that we will use for
subsequent requests. The second request actually puts us in the queue. The final
series of requests asks the website if our data is ready every 10 seconds, and
when it is, downloads the data to our local machine.

Figure 3. A process diagram of requesting a DEM from the USGS site.

Open Source Python GIS Hacks Page: 9

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Download and save the DEM

Now we need to make a class that will model the behavior of our remote DEM
from the USGS site. Looking at Figure 3, we can see that we will want to feed
this class one of our custom extent objects. Once returned, the DEM will be a
binary Arc/Info coverage that is stored in a zip file. We will then need some
methods to both get the DEM and save it to a temp directory that we can then
use to create our shaded DOQ.

The __init__ method of our DEM (subclassed from Remote) class will take in our
custom extent. All of the specific implementation exists in the get() method, and
it does all of the work of actually getting the DEM from the USGS site.

Figure 4. get() method of DEM (continued).

157 class DEM(Remote):
158 def get(self):
159 self.add_to_queue()
160 self.download()
161 temp_file = self.write_temp_file()
162 return temp_file

The get() method of DEM is really just a driver function. The main pieces of
requesting, downloading, and saving a DEM from the USGS site are
implemented separately to make things a bit easier to read, break up the code,
and allow us to make localized changes if the USGS changes their site (which
they did at least once while I was writing this exercise).

The add_to_queue() method makes the initial request to the USGS site and gives it
our extent, gets a cookie (done automatically by cookielib), and returns our place
in the queue.

163 def add_to_queue(self):
164
165 url =

'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NED01HZ'

Open Source Python GIS Hacks Page: 10

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

166 url = url %(self.extent)
167
168 req = urllib2.Request(url)
169 handle = urllib2.urlopen(req)
170
171 url =

'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus_n
ed&msd=NED.CONUS_NED_METADATA&zun=METERS&prj=0&csx=2.777777777999431E-
4&csy=2.777777777999431E-4&bnd=&bndnm='

172
173 url = url % (self.extent.inverse.minx,
174 self.extent.inverse.maxx,
175 self.extent.inverse.maxy,
176 self.extent.inverse.miny)
177
178 req2 = urllib2.Request(url)
179 handle = urllib2.urlopen(req2)
180 self.handle = handle

Now that we’re in the queue, we need a method to actually wait in the queue,
make a request to the website to ask if it is done with our DEM every 10 seconds,
and download the zip file with our data. The download() method does this.
Instead of saving the data to a file, however, we will be storing it in a cStringIO
instance. You can think of this as a string buffer. By storing it here, it will be in
memory with our instance. We are using this because we want our
write_temp_file() method to actually extract the stuff out of the zip file and return
its location to the caller so that the save() method can do what it needs.

181 def download(self):
182 if debug:
183 print 'requesting DEM download...'
184
185 # ask forever until the website returns
186 # application/x-zip-compressed as the content type
187 # I've had this go for over an hour sometimes.
188 wait, newurl = self.handle.info()['refresh'].split(';')
189 newurl = newurl.replace('URL=','').strip()
190 url2 = 'http://extract.cr.usgs.gov%s'%newurl
191 while 1:
192
193 time.sleep(int(wait))
194 request = urllib2.Request(url2)
195 response = urllib2.urlopen(request)
196
197 if 'text/html' not in response.info()['content-type']:
198 if debug:
199 print "it's our turn... downloading DEM..."
200 output = response.read()
201 break

Open Source Python GIS Hacks Page: 11

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

202 else:
203 if debug:
204 print 'still in the queue. requesting again... '
205
206 zip_output = cStringIO.StringIO()
207 zip_output.write(output)
208 self.zip_output = zip_output

Python comes with the module zipfile as a standard library, and we’ll now use
that help us implement the write_temp_file() method. This method does all of the
mundane business of extracting the Arc/Info coverage out to a temporary file
and returning the location of the file to the caller.

209 def write_temp_file(self):
210 # reset the cStringIO to read at the beginning
211 self.zip_output.reset()
212
213 # make a temp directory in $TEMP
214 temp_filename = get_timestamp()
215 outdir = os.path.join(temp_dir,temp_filename)
216 os.mkdir(outdir)
217
218 # the arcinfo files use the *opposite* path separator than
219 # than the system's.
220 if os.sep == '\\':
221 info_separator = '/'
222 else:
223 info_separator = '\\'
224
225 # extract the info coverage into the temp directory
226 z = zipfile.ZipFile(self.zip_output)
227 arcinfo_dir = z.filelist[0].filename.split(info_separator)[0]
228 tempdir = os.path.join(outdir, arcinfo_dir)
229 os.mkdir(tempdir)
230 tempdir = os.path.join(outdir, arcinfo_dir, arcinfo_dir)
231 os.mkdir(tempdir)
232 tempdir = os.path.join(outdir, arcinfo_dir, 'info')
233 os.mkdir(tempdir)
234
235 for name in z.namelist():
236 outfile = open(os.path.join(outdir, name), 'wb')
237 outfile.write(z.read(name))
238 outfile.flush()
239 outfile.close()
240
241 # USGS's zipfile buries the data in another arcinfo directory
242 # so we have to use two
243 infile = os.path.join(outdir,arcinfo_dir,arcinfo_dir)
244 return infile

Open Source Python GIS Hacks Page: 12

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Finally, here’s how we use the DEM class…

245 maxx = 437142.35
246 miny = 4658582.96
247 minx = 436521.25
248 maxy = 4659253.80
249 extent = Extent(minx, miny, maxx, maxy, epsgcode=26915)
250 print extent
251 dem = DEM(extent)
252 dem.save(r'c:\temp\dem.img')
253 42.0828443199,42.076752942,-93.7599730671,-93.7674089552
254 requesting DEM download...
255 still in the queue. requesting again...
256 it's our turn... downloading DEM...

Open Source Python GIS Hacks Page: 13

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Code Listing

1 import gdal.ogr as ogr
2 import gdal.osr as osr
3 import gdal.gdal as gdal
4
5 import cookielib
6 import urllib2
7 import cStringIO
8 import zipfile
9
10
11 from pyTS import TerraImage
12 from pyTS import pyTerra
13
14 import os
15 import sys
16 import time
17
18 debug = 1
19 cookiejar = cookielib.LWPCookieJar()
20 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookiejar))
21 urllib2.install_opener(opener)
22
23 temp_dir= os.environ['TEMP']
24
25 def get_timestamp():
26 """returns a big, unique, string that we can use for nonsensical

filenames"""
27 import md5
28 q = md5.md5(str(time.time()))
29 return q.hexdigest()
30
31 class Extent(object):
32 """An extent that can transform itself into other coordinate systems"""
33 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
34 """MapServer-style... minx, miny, maxx, maxy, with an optional

epsgcode
35 defaults to EPSG:4326"""
36 self.epsgcode = epsgcode
37 self.minx = minx
38 self.maxx = maxx
39 self.miny = miny
40 self.maxy = maxy
41 def transform(self, target_epsg_code):
42 """Transforms the extent into the target EPSG code and returns

it."""
43 mins = ogr.Geometry(type=ogr.wkbPoint)
44 maxs = mins.Clone()
45
46 mins.AddPoint(self.minx, self.miny)

Open Source Python GIS Hacks Page: 14

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

47 maxs.AddPoint(self.maxx, self.maxy)
48 ref = osr.SpatialReference()
49 ref.ImportFromEPSG(self.epsgcode)
50 maxs.AssignSpatialReference(ref)
51 mins.AssignSpatialReference(ref)
52 out_ref = osr.SpatialReference()
53 out_ref.ImportFromEPSG(target_epsg_code)
54 t_mins = mins.Clone()
55 t_mins.TransformTo(out_ref)
56 t_maxs = maxs.Clone()
57 t_maxs.TransformTo(out_ref)
58 ext = Extent(t_mins.GetX(), t_mins.GetY(),
59 t_maxs.GetX(), t_maxs.GetY(),
60 epsgcode = target_epsg_code)
61 return ext
62
63
64
65 class SmartExtent(object):
66 """A class that acts as a container for our extents by storing the
67 forward and inverse projections."""
68 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
69 """MapServer-style... minx, miny, maxx, maxy, with an optional

epsgcode
70 defaults to EPSG:4326"""
71 self.epsgcode = epsgcode
72 self.forward = Extent(minx, miny, maxx, maxy, epsgcode)
73 self.inverse = self.forward.transform(4326)
74
75 def __str__(self):
76 """Prints out the inverse extent in the form that the USGS site

needs."""
77 outstring = "%s,%s,%s,%s"
78 return outstring % (self.inverse.maxy, self.inverse.miny,
79 self.inverse.maxx, self.inverse.minx)
80
81 def get_zone(self):
82 """Returns the UTM zone of the extent."""
83 zones = {10:[-126,-120],
84 11:[-120,-114],
85 12:[-114,-108],
86 13:[-108,-102],
87 14:[-102,-96],
88 15:[-96,-90],
89 16:[-90,-84],
90 17:[-84,-78],
91 18:[-78,-72],
92 19:[-72,-66],
93 20:[-66,-60]
94 }
95

Open Source Python GIS Hacks Page: 15

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

96 minx = self.inverse.minx
97 maxx = self.inverse.maxx
98 for i in zones:
99 #build the epsg code
100 min,max = map(float,zones[i])
101 if minx > min and minx < max:
102 min_utmzone = 26900+i
103 if maxx > min and maxx < max:
104 max_utmzone = 26900+i
105 if min_utmzone == max_utmzone:
106 return min_utmzone
107 else:
108 return None
109
110
111 class Remote(object):
112 """A super class that defines the input for the three data types."""
113 def __init__(self, extent):
114 """Take in one of our SmartExtent objects."""
115 self.extent = extent
116
117 def get(self):
118 """Dummy method. Should not be called directly."""
119 pass
120
121 def save(self, filename):
122 """Saves the given filename in the coordinate system that
123 was given by the SmartExtent."""
124 infile = self.get()
125
126 o = gdal.OpenShared(infile)
127 dst_driver = gdal.GetDriverByName('HFA')
128 outref = osr.SpatialReference()
129 outref.ImportFromEPSG(self.extent.epsgcode)
130 dst_wkt = outref.ExportToWkt()
131 inref = osr.SpatialReference()
132
133 can_import = inref.ImportFromWkt(o.GetProjection())
134 if can_import != 0:
135 inref.ImportFromEPSG(4326)
136 src_wkt = inref.ExportToWkt()
137
138 gdal.CreateAndReprojectImage(o,
139 filename,
140 src_wkt = src_wkt,
141 dst_driver=dst_driver,
142 dst_wkt=dst_wkt)
143
144 class DEM(Remote):
145 """A class to get DEMs from the USGS Seamless site at
146 http://seamless.usgs.gov"""

Open Source Python GIS Hacks Page: 16

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

147 def get(self):
148 """Returns the downloaded file for the save() method"""
149 self.add_to_queue()
150 self.download()
151 temp_file = self.write_temp_file()
152 return temp_file
153
154 def add_to_queue(self):
155 """Adds our request for a DEM to the USGS queue."""
156 url =

'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NED01HZ'

157 url = url %(self.extent)
158
159 req = urllib2.Request(url)
160 handle = urllib2.urlopen(req)
161
162 url =

'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus_n
ed&msd=NED.CONUS_NED_METADATA&zun=METERS&prj=0&csx=2.777777777999431E-
4&csy=2.777777777999431E-4&bnd=&bndnm='

163
164 url = url % (self.extent.inverse.minx,
165 self.extent.inverse.maxx,
166 self.extent.inverse.maxy,
167 self.extent.inverse.miny)
168
169 req2 = urllib2.Request(url)
170 handle = urllib2.urlopen(req2)
171 self.handle = handle
172
173 def download(self):
174 """Waits in the USGS queue and downloads the DEM in
175 Arc/Info format when it is our turn."""
176 if debug:
177 print 'requesting DEM download...'
178
179 # ask forever until the website returns
180 # application/x-zip-compressed as the content type
181 # I've had this go for over an hour sometimes.
182 wait, newurl = self.handle.info()['refresh'].split(';')
183 newurl = newurl.replace('URL=','').strip()
184 url2 = 'http://extract.cr.usgs.gov%s'%newurl
185 while 1:
186
187 time.sleep(int(wait))
188 request = urllib2.Request(url2)
189 response = urllib2.urlopen(request)
190

Open Source Python GIS Hacks Page: 17

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

191 if 'text/html' not in response.info()['content-type']:
192 if debug:
193 print "it's our turn... downloading DEM..."
194 output = response.read()
195 break
196 else:
197 if debug:
198 print 'still in the queue. requesting again... '
199
200 zip_output = cStringIO.StringIO()
201 zip_output.write(output)
202 self.zip_output = zip_output
203
204 def write_temp_file(self):
205 """Writes out the file given by the download() method
206 in a temporary directory and returns the location to the
207 caller."""
208 # reset the cStringIO to read at the beginning
209 self.zip_output.reset()
210
211 # make a temp directory in $TEMP
212 temp_filename = get_timestamp()
213 outdir = os.path.join(temp_dir,temp_filename)
214 os.mkdir(outdir)
215
216 # the arcinfo files use the *opposite* path separator than
217 # than the system's.
218 if os.sep == '\\':
219 info_separator = '/'
220 else:
221 info_separator = '\\'
222
223 # extract the info coverage into the temp directory
224 z = zipfile.ZipFile(self.zip_output)
225 arcinfo_dir = z.filelist[0].filename.split(info_separator)[0]
226 tempdir = os.path.join(outdir, arcinfo_dir)
227 os.mkdir(tempdir)
228 tempdir = os.path.join(outdir, arcinfo_dir, arcinfo_dir)
229 os.mkdir(tempdir)
230 tempdir = os.path.join(outdir, arcinfo_dir, 'info')
231 os.mkdir(tempdir)
232
233 for name in z.namelist():
234 outfile = open(os.path.join(outdir, name), 'wb')
235 outfile.write(z.read(name))
236 outfile.flush()
237 outfile.close()
238
239 # USGS's zipfile buries the data in another arcinfo directory
240 # so we have to use two
241 infile = os.path.join(outdir,arcinfo_dir,arcinfo_dir)

Open Source Python GIS Hacks Page: 18

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

242 return infile
243
244
245
246
247 class DOQ(Remote):
248 """A class that implements getting a DOQ from the Microsoft
249 TerraServer."""
250 def get(self):
251 """Returns the downloaded file for the save() method"""
252 thescale = 'Scale1m' # scale of the DOQ from TS
253 thetype = 'Photo'# Photo or Topo
254
255 # a TerraImage must know its zone
256 thezone = self.extent.get_zone() - 26900
257 upperLeft = TerraImage.point(self.extent.inverse.maxy,
258 self.extent.inverse.minx)
259 lowerRight = TerraImage.point(self.extent.inverse.miny,
260 self.extent.inverse.maxx)
261
262 ti = TerraImage.TerraImage(upperLeft,
263 lowerRight,
264 thescale,
265 thetype,
266 thezone)
267 self.ti = ti
268 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.jpg'
269 self.ti.write(temp_filename)
270 self.ti.write_worldfile(temp_filename+"w")
271
272 ds = gdal.Open(temp_filename)
273 drv = gdal.GetDriverByName('GTiff')
274 tiff_filename = temp_filename.replace('.jpg','.tiff')
275 tiff_ds = drv.CreateCopy(tiff_filename, ds)
276 ref = osr.SpatialReference()
277 ref.ImportFromEPSG(self.extent.epsgcode)
278 tiff_ds.SetProjection(ref.ExportToWkt())
279
280 return tiff_filename
281
282 class SRTM(Remote):
283 """A class that implements getting the SRTM data from the
284 WCS server at http://maps.gdal.org"""
285 def get(self):
286 """Returns the downloaded file for the save() method"""
287 url = 'http://maps.gdal.org/cgi-

bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus_raw&version=1.0.0&service=
WCS&request=GetCoverage&bbox=%s&width=100&height=100&format=GEOTIFF_INT16'

288
289 extent_string = '%s,%s,%s,%s' % (self.extent.inverse.minx,
290 self.extent.inverse.miny,

Open Source Python GIS Hacks Page: 19

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

291 self.extent.inverse.maxx,
292 self.extent.inverse.maxy
293)
294 url = url % extent_string
295 response = urllib2.urlopen(url)
296
297 astring = response.read()
298
299 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.tiff'
300 fo = open(temp_filename,'wb')
301 fo.write(astring)
302 fo.close()
303 return temp_filename
304
305 maxx = 437142.35
306 miny = 4658582.96
307 minx = 436521.25
308 maxy = 4659253.80
309 extent = SmartExtent(minx, miny, maxx, maxy, epsgcode=26915)
310 print extent
311 dem = DEM(extent)
312 dem.save(r'c:\temp\usgs.img')
313 doq = DOQ(extent)
314 doq.save(r'C:\temp\doq.img')
315 srtm = SRTM(extent)
316 srtm.save(r'c:\temp\srtm.img')

Open Source Python GIS Hacks Page: 1

Exploring Web Feature Services 6/16/2005

Exploring Web Feature Services

No fancy client needed, open standards and XML make it easy to explore WFS

using Python.

Capabilities

We'll test against my two-bit WFS instance at

http://zcologia.com:9001/mapserver/members/

which has members of the next generation MapServer site as its sole feature type,

and if port 9001 is forbidden in the UMN computer lab, we'll try

http://www.refractions.net:8080/geoserver/wfs/GetCapabilities

or another service from the catalog at

http://www.refractions.net/white_papers/ogcsurvey/index.php

Connecting

Start up the Python interpreter and define a GetCapabilities request URL:

>>> base =
'http://zcologia.com:9001/mapserver/members/capabilities.r
py'

>>> request = base +
'?service=WFS&request=GetCapabilities'

We'll use urllib to get a file on this URL and parse the file with an
ElementTree

>>> import urllib

>>> u = urllib.urlopen(request)

>>> from elementtree.ElementTree import ElementTree

>>> tree = ElementTree()

>>> root = tree.parse(u)

This method returns the root Element of tree. Next print root

>>> print root

<Element {http://www.opengis.net/wfs}WFS_Capabilities at
99ed78>

>>>

the string representation of an Element includes the qualified name of the

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2

Exploring Web Feature Services 6/16/2005

element in the form {uri}local. In an XML file, we usually define a prefix for each

URI, and write the element out like '<prefix:local />'.

Service Elements

Elements are list-like, so we have a simple Python-ic way to inspect the children

of any element

>>> list(root)

[<Element {http://www.opengis.net/wfs}Service at 97a580>,
<Element {http://www.opengis.net/wfs}Capability at
99e878>, <Element {http://www.opengis.net/wfs}
FeatureTypeList at 9a5148>, <Element
{http://www.opengis.net/wfs}Filter_Capabilities at
9a53a0>]

Let's pick out the Service, or more accurately, the {http://www.opengis.net/wfs}

Service element and print its children

>>> service = root[0]

>>> for e in service:

... print '%s => %s' % (e.tag, e.text)

...

{http://www.opengis.net/wfs}Title => MapServer Site Member
Locations

{http://www.opengis.net/wfs}Name => members

{http://www.opengis.net/wfs}OnlineResource =>
http://zcologia.com:9001/mapserver/members

{http://www.opengis.net/wfs}Abstract => Demonstrating a
lightweight and low budget WFS server using ElementTree
and Twisted. Every 5 minutes we use RPC to mine the next
generation MapServer website for member locations. These
locations are rendered into GML for a WFS response.

{http://www.opengis.net/wfs}AccessConstraints => NONE

{http://www.opengis.net/wfs}Fees => NONE

{http://www.opengis.net/wfs}Keywords => WFS, ELEMENTTREE,
TWISTED, PYTHON

>>>

FeatureType Elements

The question we ask now is whether this service can give us any point type

features. The first step towards the answer is to poke around our root's

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3

Exploring Web Feature Services 6/16/2005

FeatureTypeList element. This is at index 2.

>>> ftypes = root[2].getiterator
('{http://www.opengis.net/wfs}FeatureType')

>>> ftypes

[<Element {http://www.opengis.net/wfs}FeatureType at
9a5a80>]

>>> list(ftypes[0])

[<Element {http://www.opengis.net/wfs}Name at 9a59e0>,
<Element {http://www.opengis.net/wfs}SRS at 9a5ad0>,
<Element {http://www.opengis.net/wfs}LatLongBoundingBox at
9a5af8>]

>>> for e in ftypes[0]:

... print '%s => %s' % (e.tag, e.text)

...

{http://www.opengis.net/wfs}Name => member

{http://www.opengis.net/wfs}SRS => EPSG:4326

{http://www.opengis.net/wfs}LatLongBoundingBox => None

>>>

Capability Elements

So, we have a feature type named 'member' ... does it have a point property? To

answer this, we'll need to make a GetFeatureType request. The base URL for

such a request is found by inspecting the root's Capability element:

>>> capability = root[1]

>>> list(capability)

[<Element {http://www.opengis.net/wfs}Request at 99ed00>]

>>> request = capability[0]

>>> list(request)

[<Element {http://www.opengis.net/wfs}GetCapabilities at
99eaf8>, <Element {http://www.opengis.net/wfs}
DescribeFeatureType at 9a52d8>, <Element
{http://www.opengis.net/wfs}GetFeature at 9a5580>]

>>> iter = request.getiterator
('{http://www.opengis.net/wfs}Get')

>>> for e in iter:

... print '%s => %s' % (e.tag, e.items())

...

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Exploring Web Feature Services 6/16/2005

{http://www.opengis.net/wfs}Get => [('onlineResource',
'http://zcologia.com:9001/mapserver/members/capabilities.r
py')]

{http://www.opengis.net/wfs}Get => [('onlineResource',
'http://zcologia.com:9001/mapserver/members/description.rp
y')]

{http://www.opengis.net/wfs}Get => [('onlineResource',
'http://zcologia.com:9001/mapserver/members/features.rpy')
]

The second of these elements is the one we are after.

DescribeFeatureType

Now we make a DescribeFeatureType request and parse the response.

>>> description_base = iter[1].get('onlineResource')

>>> url = description_base +
'?service=WFS&request=DescribeFeatureType&typename=member'

>>> u = urllib.urlopen(url)

>>> dtree = ElementTree()

>>> droot = dtree.parse(u)

>>> list(droot)

[<Element {http://www.w3.org/2001/XMLSchema}import at
a3df30>, <Element {http://www.w3.org/2001/XMLSchema}
element at a3df58>, <Element
{http://www.w3.org/2001/XMLSchema}complexType at a3de40>]

Making sense of the schema is a bit beyond the scope of this humble hacking

workshop. We'll just print the attributes of the schema elements and look for

location, position, or pointProperty types and refs:

>>> elems = droot.getiterator
('{http://www.w3.org/2001/XMLSchema}element')

>>> for e in elems:

... print e.items()

...

[('substitutionGroup', 'gml:_Feature'), ('type',
'member_Type'), ('name', 'member')]

[('type', 'string'), ('name', 'fid')]

[('type', 'string'), ('name', 'mid')]

[('type', 'string'), ('name', 'fullname')]

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Exploring Web Feature Services 6/16/2005

[('ref', 'gml:location')]

>>>

gml:location ... we have a point property.

Howard Butler and Sean Gillies Open Source Geospatial '05

Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 1

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Get DEM, DOQ, and SRTM data for any area of interest in
the coterminous US

You need digital elevation data and ortho imagery for any area of interest in
the coterminous US.

One approach might be the “Google” approach, ie download all of the US NED
and USGS DOQ data for the entire US, process it, and then store it. The
approach has some disadvantages, however. First, USGS updates both the NED
and DOQ data at different intervals for different parts of the country. If you
were to pre-process everything, you would only have a single “snapshot” that
was only valid for a single point it time – you want the latest and greatest data.
Second, the storage requirements for this approach are humungous. The cost of
maintaining all three datasets would be very high, and you would still have the
problem of refreshing the data.

Another, more timely approach, would be to automate the process of getting
each on demand, depend on the infrastructure that already manages them, and
use the data in whichever application needs it.

This hack will utilize three methods to request, acquire, and transfer the data.
The DEM will be “scraped” off of the USGS site, the DOQ will be requested
through TerraServer’s SOAP API, and the SRTM data will come from a
MapServer-based WCS (Web Coverage Service) source.

What you need:

• Python (obviously)
• GDAL (for projecting the DEM, and creating the output data)
• pyTerra (for requesting the DOQ from TerraServer)
• OpenEV (to view your output)
•

Some strategerizing

All three of our data types – DEM, DOQ, and SRTM – need to be saved out to
Imagine (HFA) format in the same coordinate system as the extent that we’ll
specify. Even though we’re hacking, a little object-orient design could save us
some time. One thing to notice is that each of the data types is given the same
starting point – an extent, and each has the same end point – saved to an Imagine
file.

The part that is different for each of the three data types is how the data are
actually gotten. If we create a class that can be subclassed for each of the three
types, we only have to implement the part that gets the data in each.

Open Source Python GIS Hacks Page: 2

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Figure 1. The Remote class implements the three methods – __init__, get, and
save – that each of the three data types need. We will subclass Remote for all
three and provide our own implementation of get() for each.

A smart extent object

To start, we need something that is a “smart” extent that knows how to project
itself. We will use a class to do this, and the class will take in minx, miny, maxx,
and maxy parameters on instantiation as well as an optional EPSG code telling
us which coordinate system the extent is in (defaulting to 4326). The Extent
object will provide a transform() method that can transform the extent into any
other coordinate system.

To make things a bit easier, we will make a class called SmartExtent that will
store both the forward and inverse extents to make it easy to get both the
projected and unprojected coordinates.

Figure 2. Extent and SmartExtent objects. The SmartExtent object just acts
as a container and takes care of calling the transform() method for us.

Open Source Python GIS Hacks Page: 3

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

1 class Extent(object):
2 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
3 self.epsgcode = epsgcode
4 self.minx = minx
5 self.maxx = maxx
6 self.miny = miny
7 self.maxy = maxy
8 def transform(self, target_epsg_code):
9 mins = ogr.Geometry(type=ogr.wkbPoint)
10 maxs = mins.Clone()
11
12 mins.AddPoint(self.minx, self.miny)
13 maxs.AddPoint(self.maxx, self.maxy)
14 ref = osr.SpatialReference()
15 ref.ImportFromEPSG(self.epsgcode)
16 maxs.AssignSpatialReference(ref)
17 mins.AssignSpatialReference(ref)
18 out_ref = osr.SpatialReference()
19 out_ref.ImportFromEPSG(target_epsg_code)
20 t_mins = mins.Clone()
21 t_mins.TransformTo(out_ref)
22 t_maxs = maxs.Clone()
23 t_maxs.TransformTo(out_ref)
24 ext = Extent(t_mins.GetX(), t_mins.GetY(),
25 t_maxs.GetX(), t_maxs.GetY(),
26 epsgcode = target_epsg_code)
27 return ext

We’ll use the SmartExtent object to act as a container for our transformed extents.

28 class SmartExtent(object):
29 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
30 self.epsgcode = epsgcode
31 self.forward = Extent(minx, miny, maxx, maxy, epsgcode)
32 self.inverse = self.forward.transform(4326)

Next, the instance needs to know how return the transformed (in 4326)
coordinates whenever we try to get the string representation of it (this way we
can easily substitute it into the URL for the area-of-interest query).

33 def __str__(self):
34 outstring = "%s,%s,%s,%s"
35 return outstring % (self.inverse.maxy, self.inverse.miny,
36 self.inverse.maxx, self.inverse.minx)

Some test code

37 minx = 437142.35
38 miny = 4658582.96
39 maxx = 436521.25
40 maxy = 4659253.80

Open Source Python GIS Hacks Page: 4

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

41 extent = SmartExtent(minx, miny, maxx, maxy, epsgcode=26915)
42 print extent
43 >> 42.0827943476,42.0768029037,-93.7674817555,-93.759900979

Now that we have a smart extent, we can input a bounding box in whatever
projection system we need. The advantages of doing it this way instead of just
using a simple lat/lon box are twofold. First, if we need to, we can reuse this
extent and add more smarts to it when we need to (and will for downloading the
TerraServer imagery). Second, providing the convenience of an auto-projecting
extent protects our little application from changes in requirements up the line.
That way, when your boss asks, “Can I feed this a Lambert Conformal Conic
extent instead?”, you’ll be ready for it.

The super class’s save() method

While each subclass implements its own get() method, the Remote class will be the
one implementing the save() method so that each of the three data types will
behave similarly. It also defines the __init__() method that takes in one of our
extents.

One thing to note here is that the save() method takes care to get the projection
information from the native-format files that the get() method returns. It also
makes sure that the raster is projected into the coordinate system that was given
in the extent.

44 class Remote(object):
45 def __init__(self, extent):
46 self.extent = extent
47
48 def get(self):
49 pass
50
51 def save(self, filename):
52
53 infile = self.get()
54
55 o = gdal.OpenShared(infile)
56 dst_driver = gdal.GetDriverByName('HFA')
57 outref = osr.SpatialReference()
58 outref.ImportFromEPSG(self.extent.epsgcode)
59 dst_wkt = outref.ExportToWkt()
60 inref = osr.SpatialReference()
61
62 can_import = inref.ImportFromWkt(o.GetProjection())
63 if can_import != 0:
64 inref.ImportFromEPSG(4326)
65 src_wkt = inref.ExportToWkt()
66
67

Open Source Python GIS Hacks Page: 5

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

68 gdal.CreateAndReprojectImage(o,
69 filename,
70 src_wkt = src_wkt,
71 dst_driver=dst_driver,
72 dst_wkt=dst_wkt)

Getting the DOQ

The work of getting the DOQ from TerraServer has already been done for us.
The pyTerra (http://hobu.biz/software/pyTerra/) library has a class called
TerraImage that does all of the work that we implemented in the get() method of
RemoteDEM. All we need to do is to create a get() method that does the work of
downloading the TerraServer image, setting the coordinate system to the
coordinate system (UTM zone) that TerraServer gave us, and return the filename
back to the instance so that the save() method can pick it up and reproject it into
the our coordinate system of choice.

There is one complication, however. The TerraImage class of pyTerra requires
that the UTM zone also be given with the request. Because we made the “smart”
extent, providing this won’t be too hard. The smart extent already contains the
information we need (the longitude) to calculate a UTM zone in its t_mins and
t_maxs attributes. We can use these attributes and a lookup dictionary to find
the UTM zone of the extent. If the extent crosses two UTM zones, nothing is
returned (TerraServer can’t process requests across UTM zones in a single pass
anyway).

73 class SmartExtent(object):
74 …
75 def get_zone(self):
76 zones = {10:[-126,-120],
77 11:[-120,-114],
78 12:[-114,-108],
79 13:[-108,-102],
80 14:[-102,-96],
81 15:[-96,-90],
82 16:[-90,-84],
83 17:[-84,-78],
84 18:[-78,-72],
85 19:[-72,-66],
86 20:[-66,-60]
87 }
88
89 minx = self.inverse.minx
90 maxx = self.inverse.maxx
91 for i in zones:
92 #build the epsg code
93 min,max = map(float,zones[i])
94 if minx > min and minx < max:
95 min_utmzone = 26900+i
96 if maxx > min and maxx < max:
97 max_utmzone = 26900+i

Open Source Python GIS Hacks Page: 6

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

98 if min_utmzone == max_utmzone:
99 return min_utmzone
100 else:
101 return None

In our get() method, we set all of the information needed for the TerraImage
instance and save the JPEG and worldfile into the temporary directory, open it
with GDAL, convert it to a GeoTIFF, and add the coordinate reference. The
save() method will then pick this up when reprojecting the DOQ into the
coordinate system that we defined in our extent.

102 class DOQ(Remote):
103
104 def get(self):
105 thescale = 'Scale1m' # scale of the DOQ from TS
106 thetype = 'Photo'# Photo or Topo
107
108 # a TerraImage must know its zone
109 thezone = self.extent.get_zone() - 26900
110 upperLeft = TerraImage.point(self.extent.inverse.maxy,
111 self.extent.inverse.minx)
112 lowerRight = TerraImage.point(self.extent.inverse.miny,
113 self.extent.inverse.maxx)
114
115 ti = TerraImage.TerraImage(upperLeft,
116 lowerRight,
117 thescale,
118 thetype,
119 thezone)
120 self.ti = ti
121 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.jpg'
122 self.ti.write(temp_filename)
123 self.ti.write_worldfile(temp_filename+"w")
124
125 ds = gdal.Open(temp_filename)
126 drv = gdal.GetDriverByName('GTiff')
127 tiff_filename = temp_filename.replace('.jpg','.tiff')
128 tiff_ds = drv.CreateCopy(tiff_filename, ds)
129 ref = osr.SpatialReference()
130 ref.ImportFromEPSG(self.extent.epsgcode)
131 tiff_ds.SetProjection(ref.ExportToWkt())
132
133 return tiff_filename

The usage of this class is a simple, two-line call:

134 doq = DOQ(extent)
135 doq.save(r'C:\temp\doq.img')

Open Source Python GIS Hacks Page: 7

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Getting the SRTM data

As of MapServer 4.4, support for WCS (Web Coverage Service) is available.
Whereas WMS provides a rendered map image, WCS allows a requestor to
obtain the actual raw raster data through a structured URL request. Frank
Warmerdam provides the SRTM (Shuttle Radar Topography Mission) through a
WCS service at http://maps.gdal.org . Here is an example of the “Capabilities”
request that you can use to find out more information about a WCS server – in
our case Frank’s.

136 http://maps.gdal.org/cgi-
bin/mapserv_dem?&version=1.0.0&service=WCS&request=GetCapabilities

Hitting this URL in our web browser, we can see that there is one layer, called
srtmplus_raw, which appears to have what we want.

Next, we’ll use a DescribeCoverage method to find out more information about the
layer.

137 http://maps.gdal.org/cgi-
bin/mapserv_dem?&version=1.0.0&service=WCS&request=DescribeCoverage&layer=s
rtmplus_raw

The XML listing of this request shows us that that the layer is provided in the
EPSG:4326 and EPSG:4269 coordinate systems, has an output format of
GEOTIFF_INT16, and has a resolution of 0.00833333 degrees per pixel.

With this information in hand, we have enough information to build a Python
class to do the work of downloading the image for us. We’ve already done most
of the work, however. The RemoteDEM class already defines a way to take in an
extent, and turn a temporary GDAL DataSet into a projected Imagine file.

All our RemoteSRTM class needs to define is the _save_tempfile() method. This
method needs to formulate the request, download it, and save it to a temporary
file.

138 class RemoteSRTM(RemoteDEM):
139 def get(self):
140 url = 'http://maps.gdal.org/cgi-

bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus_raw&version=1.0.0&service=
WCS&request=GetCoverage&bbox=%s&width=100&height=100&format=GEOTIFF_INT16'

141
142 extent_string = '%s,%s,%s,%s' % (self.extent.t_mins.GetX(),
143 self.extent.t_mins.GetY(),
144 self.extent.t_maxs.GetX(),
145 self.extent.t_maxs.GetY()
146)
147 url = url % extent_string
148 response = urllib2.urlopen(url)
149
150 astring = response.read()
151
152 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.tiff'

Open Source Python GIS Hacks Page: 8

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

153 fo = open(temp_filename,'wb')
154 fo.write(astring)
155 fo.close()
156 return temp_filename

USGS NED DEM

USGS provides one product of digital elevation models called the NED (National
Elevation Dataset) on their website at http://seamless.usgs.gov. The user
interface for requesting DEMs is pretty clunky, but it amounts to manually
defining an area of interest, choosing the “Download” link, waiting in a queue,
and then saving the zip file of the DEM on your local machine.

Python provides excellent capabilities for working with URLs in the standard
libraries urllib and urllib2. We can use urllib2 and cookielib (another standard
library as of Python 2.4) to simulate the user requesting an area of interest,
waiting in the queue, and saving the resulting zip file on the local file system.

We need to make a series of requests to the USGS site to simulate a user doing
the same thing. The first request asks the USGS for a session, tells the site which
area of interest we want, and returns us the session cookie that we will use for
subsequent requests. The second request actually puts us in the queue. The final
series of requests asks the website if our data is ready every 10 seconds, and
when it is, downloads the data to our local machine.

Figure 3. A process diagram of requesting a DEM from the USGS site.

Open Source Python GIS Hacks Page: 9

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Download and save the DEM

Now we need to make a class that will model the behavior of our remote DEM
from the USGS site. Looking at Figure 3, we can see that we will want to feed
this class one of our custom extent objects. Once returned, the DEM will be a
binary Arc/Info coverage that is stored in a zip file. We will then need some
methods to both get the DEM and save it to a temp directory that we can then
use to create our shaded DOQ.

The __init__ method of our DEM (subclassed from Remote) class will take in our
custom extent. All of the specific implementation exists in the get() method, and
it does all of the work of actually getting the DEM from the USGS site.

Figure 4. get() method of DEM (continued).

157 class DEM(Remote):
158 def get(self):
159 self.add_to_queue()
160 self.download()
161 temp_file = self.write_temp_file()
162 return temp_file

The get() method of DEM is really just a driver function. The main pieces of
requesting, downloading, and saving a DEM from the USGS site are
implemented separately to make things a bit easier to read, break up the code,
and allow us to make localized changes if the USGS changes their site (which
they did at least once while I was writing this exercise).

The add_to_queue() method makes the initial request to the USGS site and gives it
our extent, gets a cookie (done automatically by cookielib), and returns our place
in the queue.

163 def add_to_queue(self):
164
165 url =

'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NED01HZ'

Open Source Python GIS Hacks Page: 10

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

166 url = url %(self.extent)
167
168 req = urllib2.Request(url)
169 handle = urllib2.urlopen(req)
170
171 url =

'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus_n
ed&msd=NED.CONUS_NED_METADATA&zun=METERS&prj=0&csx=2.777777777999431E-
4&csy=2.777777777999431E-4&bnd=&bndnm='

172
173 url = url % (self.extent.inverse.minx,
174 self.extent.inverse.maxx,
175 self.extent.inverse.maxy,
176 self.extent.inverse.miny)
177
178 req2 = urllib2.Request(url)
179 handle = urllib2.urlopen(req2)
180 self.handle = handle

Now that we’re in the queue, we need a method to actually wait in the queue,
make a request to the website to ask if it is done with our DEM every 10 seconds,
and download the zip file with our data. The download() method does this.
Instead of saving the data to a file, however, we will be storing it in a cStringIO
instance. You can think of this as a string buffer. By storing it here, it will be in
memory with our instance. We are using this because we want our
write_temp_file() method to actually extract the stuff out of the zip file and return
its location to the caller so that the save() method can do what it needs.

181 def download(self):
182 if debug:
183 print 'requesting DEM download...'
184
185 # ask forever until the website returns
186 # application/x-zip-compressed as the content type
187 # I've had this go for over an hour sometimes.
188 wait, newurl = self.handle.info()['refresh'].split(';')
189 newurl = newurl.replace('URL=','').strip()
190 url2 = 'http://extract.cr.usgs.gov%s'%newurl
191 while 1:
192
193 time.sleep(int(wait))
194 request = urllib2.Request(url2)
195 response = urllib2.urlopen(request)
196
197 if 'text/html' not in response.info()['content-type']:
198 if debug:
199 print "it's our turn... downloading DEM..."
200 output = response.read()
201 break

Open Source Python GIS Hacks Page: 11

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

202 else:
203 if debug:
204 print 'still in the queue. requesting again... '
205
206 zip_output = cStringIO.StringIO()
207 zip_output.write(output)
208 self.zip_output = zip_output

Python comes with the module zipfile as a standard library, and we’ll now use
that help us implement the write_temp_file() method. This method does all of the
mundane business of extracting the Arc/Info coverage out to a temporary file
and returning the location of the file to the caller.

209 def write_temp_file(self):
210 # reset the cStringIO to read at the beginning
211 self.zip_output.reset()
212
213 # make a temp directory in $TEMP
214 temp_filename = get_timestamp()
215 outdir = os.path.join(temp_dir,temp_filename)
216 os.mkdir(outdir)
217
218 # the arcinfo files use the *opposite* path separator than
219 # than the system's.
220 if os.sep == '\\':
221 info_separator = '/'
222 else:
223 info_separator = '\\'
224
225 # extract the info coverage into the temp directory
226 z = zipfile.ZipFile(self.zip_output)
227 arcinfo_dir = z.filelist[0].filename.split(info_separator)[0]
228 tempdir = os.path.join(outdir, arcinfo_dir)
229 os.mkdir(tempdir)
230 tempdir = os.path.join(outdir, arcinfo_dir, arcinfo_dir)
231 os.mkdir(tempdir)
232 tempdir = os.path.join(outdir, arcinfo_dir, 'info')
233 os.mkdir(tempdir)
234
235 for name in z.namelist():
236 outfile = open(os.path.join(outdir, name), 'wb')
237 outfile.write(z.read(name))
238 outfile.flush()
239 outfile.close()
240
241 # USGS's zipfile buries the data in another arcinfo directory
242 # so we have to use two
243 infile = os.path.join(outdir,arcinfo_dir,arcinfo_dir)
244 return infile

Open Source Python GIS Hacks Page: 12

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Finally, here’s how we use the DEM class…

245 maxx = 437142.35
246 miny = 4658582.96
247 minx = 436521.25
248 maxy = 4659253.80
249 extent = Extent(minx, miny, maxx, maxy, epsgcode=26915)
250 print extent
251 dem = DEM(extent)
252 dem.save(r'c:\temp\dem.img')
253 42.0828443199,42.076752942,-93.7599730671,-93.7674089552
254 requesting DEM download...
255 still in the queue. requesting again...
256 it's our turn... downloading DEM...

Open Source Python GIS Hacks Page: 13

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

Code Listing

1 import gdal.ogr as ogr
2 import gdal.osr as osr
3 import gdal.gdal as gdal
4
5 import cookielib
6 import urllib2
7 import cStringIO
8 import zipfile
9
10
11 from pyTS import TerraImage
12 from pyTS import pyTerra
13
14 import os
15 import sys
16 import time
17
18 debug = 1
19 cookiejar = cookielib.LWPCookieJar()
20 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookiejar))
21 urllib2.install_opener(opener)
22
23 temp_dir= os.environ['TEMP']
24
25 def get_timestamp():
26 """returns a big, unique, string that we can use for nonsensical

filenames"""
27 import md5
28 q = md5.md5(str(time.time()))
29 return q.hexdigest()
30
31 class Extent(object):
32 """An extent that can transform itself into other coordinate systems"""
33 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
34 """MapServer-style... minx, miny, maxx, maxy, with an optional

epsgcode
35 defaults to EPSG:4326"""
36 self.epsgcode = epsgcode
37 self.minx = minx
38 self.maxx = maxx
39 self.miny = miny
40 self.maxy = maxy
41 def transform(self, target_epsg_code):
42 """Transforms the extent into the target EPSG code and returns

it."""
43 mins = ogr.Geometry(type=ogr.wkbPoint)
44 maxs = mins.Clone()
45
46 mins.AddPoint(self.minx, self.miny)

Open Source Python GIS Hacks Page: 14

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

47 maxs.AddPoint(self.maxx, self.maxy)
48 ref = osr.SpatialReference()
49 ref.ImportFromEPSG(self.epsgcode)
50 maxs.AssignSpatialReference(ref)
51 mins.AssignSpatialReference(ref)
52 out_ref = osr.SpatialReference()
53 out_ref.ImportFromEPSG(target_epsg_code)
54 t_mins = mins.Clone()
55 t_mins.TransformTo(out_ref)
56 t_maxs = maxs.Clone()
57 t_maxs.TransformTo(out_ref)
58 ext = Extent(t_mins.GetX(), t_mins.GetY(),
59 t_maxs.GetX(), t_maxs.GetY(),
60 epsgcode = target_epsg_code)
61 return ext
62
63
64
65 class SmartExtent(object):
66 """A class that acts as a container for our extents by storing the
67 forward and inverse projections."""
68 def __init__(self, minx, miny, maxx, maxy, epsgcode=4326):
69 """MapServer-style... minx, miny, maxx, maxy, with an optional

epsgcode
70 defaults to EPSG:4326"""
71 self.epsgcode = epsgcode
72 self.forward = Extent(minx, miny, maxx, maxy, epsgcode)
73 self.inverse = self.forward.transform(4326)
74
75 def __str__(self):
76 """Prints out the inverse extent in the form that the USGS site

needs."""
77 outstring = "%s,%s,%s,%s"
78 return outstring % (self.inverse.maxy, self.inverse.miny,
79 self.inverse.maxx, self.inverse.minx)
80
81 def get_zone(self):
82 """Returns the UTM zone of the extent."""
83 zones = {10:[-126,-120],
84 11:[-120,-114],
85 12:[-114,-108],
86 13:[-108,-102],
87 14:[-102,-96],
88 15:[-96,-90],
89 16:[-90,-84],
90 17:[-84,-78],
91 18:[-78,-72],
92 19:[-72,-66],
93 20:[-66,-60]
94 }
95

Open Source Python GIS Hacks Page: 15

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

96 minx = self.inverse.minx
97 maxx = self.inverse.maxx
98 for i in zones:
99 #build the epsg code
100 min,max = map(float,zones[i])
101 if minx > min and minx < max:
102 min_utmzone = 26900+i
103 if maxx > min and maxx < max:
104 max_utmzone = 26900+i
105 if min_utmzone == max_utmzone:
106 return min_utmzone
107 else:
108 return None
109
110
111 class Remote(object):
112 """A super class that defines the input for the three data types."""
113 def __init__(self, extent):
114 """Take in one of our SmartExtent objects."""
115 self.extent = extent
116
117 def get(self):
118 """Dummy method. Should not be called directly."""
119 pass
120
121 def save(self, filename):
122 """Saves the given filename in the coordinate system that
123 was given by the SmartExtent."""
124 infile = self.get()
125
126 o = gdal.OpenShared(infile)
127 dst_driver = gdal.GetDriverByName('HFA')
128 outref = osr.SpatialReference()
129 outref.ImportFromEPSG(self.extent.epsgcode)
130 dst_wkt = outref.ExportToWkt()
131 inref = osr.SpatialReference()
132
133 can_import = inref.ImportFromWkt(o.GetProjection())
134 if can_import != 0:
135 inref.ImportFromEPSG(4326)
136 src_wkt = inref.ExportToWkt()
137
138 gdal.CreateAndReprojectImage(o,
139 filename,
140 src_wkt = src_wkt,
141 dst_driver=dst_driver,
142 dst_wkt=dst_wkt)
143
144 class DEM(Remote):
145 """A class to get DEMs from the USGS Seamless site at
146 http://seamless.usgs.gov"""

Open Source Python GIS Hacks Page: 16

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

147 def get(self):
148 """Returns the downloaded file for the save() method"""
149 self.add_to_queue()
150 self.download()
151 temp_file = self.write_temp_file()
152 return temp_file
153
154 def add_to_queue(self):
155 """Adds our request for a DEM to the USGS queue."""
156 url =

'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NED01HZ'

157 url = url %(self.extent)
158
159 req = urllib2.Request(url)
160 handle = urllib2.urlopen(req)
161
162 url =

'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus_n
ed&msd=NED.CONUS_NED_METADATA&zun=METERS&prj=0&csx=2.777777777999431E-
4&csy=2.777777777999431E-4&bnd=&bndnm='

163
164 url = url % (self.extent.inverse.minx,
165 self.extent.inverse.maxx,
166 self.extent.inverse.maxy,
167 self.extent.inverse.miny)
168
169 req2 = urllib2.Request(url)
170 handle = urllib2.urlopen(req2)
171 self.handle = handle
172
173 def download(self):
174 """Waits in the USGS queue and downloads the DEM in
175 Arc/Info format when it is our turn."""
176 if debug:
177 print 'requesting DEM download...'
178
179 # ask forever until the website returns
180 # application/x-zip-compressed as the content type
181 # I've had this go for over an hour sometimes.
182 wait, newurl = self.handle.info()['refresh'].split(';')
183 newurl = newurl.replace('URL=','').strip()
184 url2 = 'http://extract.cr.usgs.gov%s'%newurl
185 while 1:
186
187 time.sleep(int(wait))
188 request = urllib2.Request(url2)
189 response = urllib2.urlopen(request)
190

Open Source Python GIS Hacks Page: 17

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

191 if 'text/html' not in response.info()['content-type']:
192 if debug:
193 print "it's our turn... downloading DEM..."
194 output = response.read()
195 break
196 else:
197 if debug:
198 print 'still in the queue. requesting again... '
199
200 zip_output = cStringIO.StringIO()
201 zip_output.write(output)
202 self.zip_output = zip_output
203
204 def write_temp_file(self):
205 """Writes out the file given by the download() method
206 in a temporary directory and returns the location to the
207 caller."""
208 # reset the cStringIO to read at the beginning
209 self.zip_output.reset()
210
211 # make a temp directory in $TEMP
212 temp_filename = get_timestamp()
213 outdir = os.path.join(temp_dir,temp_filename)
214 os.mkdir(outdir)
215
216 # the arcinfo files use the *opposite* path separator than
217 # than the system's.
218 if os.sep == '\\':
219 info_separator = '/'
220 else:
221 info_separator = '\\'
222
223 # extract the info coverage into the temp directory
224 z = zipfile.ZipFile(self.zip_output)
225 arcinfo_dir = z.filelist[0].filename.split(info_separator)[0]
226 tempdir = os.path.join(outdir, arcinfo_dir)
227 os.mkdir(tempdir)
228 tempdir = os.path.join(outdir, arcinfo_dir, arcinfo_dir)
229 os.mkdir(tempdir)
230 tempdir = os.path.join(outdir, arcinfo_dir, 'info')
231 os.mkdir(tempdir)
232
233 for name in z.namelist():
234 outfile = open(os.path.join(outdir, name), 'wb')
235 outfile.write(z.read(name))
236 outfile.flush()
237 outfile.close()
238
239 # USGS's zipfile buries the data in another arcinfo directory
240 # so we have to use two
241 infile = os.path.join(outdir,arcinfo_dir,arcinfo_dir)

Open Source Python GIS Hacks Page: 18

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

242 return infile
243
244
245
246
247 class DOQ(Remote):
248 """A class that implements getting a DOQ from the Microsoft
249 TerraServer."""
250 def get(self):
251 """Returns the downloaded file for the save() method"""
252 thescale = 'Scale1m' # scale of the DOQ from TS
253 thetype = 'Photo'# Photo or Topo
254
255 # a TerraImage must know its zone
256 thezone = self.extent.get_zone() - 26900
257 upperLeft = TerraImage.point(self.extent.inverse.maxy,
258 self.extent.inverse.minx)
259 lowerRight = TerraImage.point(self.extent.inverse.miny,
260 self.extent.inverse.maxx)
261
262 ti = TerraImage.TerraImage(upperLeft,
263 lowerRight,
264 thescale,
265 thetype,
266 thezone)
267 self.ti = ti
268 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.jpg'
269 self.ti.write(temp_filename)
270 self.ti.write_worldfile(temp_filename+"w")
271
272 ds = gdal.Open(temp_filename)
273 drv = gdal.GetDriverByName('GTiff')
274 tiff_filename = temp_filename.replace('.jpg','.tiff')
275 tiff_ds = drv.CreateCopy(tiff_filename, ds)
276 ref = osr.SpatialReference()
277 ref.ImportFromEPSG(self.extent.epsgcode)
278 tiff_ds.SetProjection(ref.ExportToWkt())
279
280 return tiff_filename
281
282 class SRTM(Remote):
283 """A class that implements getting the SRTM data from the
284 WCS server at http://maps.gdal.org"""
285 def get(self):
286 """Returns the downloaded file for the save() method"""
287 url = 'http://maps.gdal.org/cgi-

bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus_raw&version=1.0.0&service=
WCS&request=GetCoverage&bbox=%s&width=100&height=100&format=GEOTIFF_INT16'

288
289 extent_string = '%s,%s,%s,%s' % (self.extent.inverse.minx,
290 self.extent.inverse.miny,

Open Source Python GIS Hacks Page: 19

Remote DEM and DOQ 6/16/2005

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
 Minneapolis, MN

291 self.extent.inverse.maxx,
292 self.extent.inverse.maxy
293)
294 url = url % extent_string
295 response = urllib2.urlopen(url)
296
297 astring = response.read()
298
299 temp_filename = os.path.join(temp_dir, get_timestamp()) + '.tiff'
300 fo = open(temp_filename,'wb')
301 fo.write(astring)
302 fo.close()
303 return temp_filename
304
305 maxx = 437142.35
306 miny = 4658582.96
307 minx = 436521.25
308 maxy = 4659253.80
309 extent = SmartExtent(minx, miny, maxx, maxy, epsgcode=26915)
310 print extent
311 dem = DEM(extent)
312 dem.save(r'c:\temp\usgs.img')
313 doq = DOQ(extent)
314 doq.save(r'C:\temp\doq.img')
315 srtm = SRTM(extent)
316 srtm.save(r'c:\temp\srtm.img')

