Open Source Python GIS Hacks Page: 1
Intro to Python 6/16/2005

Introduction to Python

You need a quickie refresher on Python to get started.

Python’s reputation precedes it. You've probably heard that is Python an
interpreted language, that it has significant whitespace (which some find

repulsive), and that it powers some of the most well known websites and
computing systems in the world.

You may have heard that Python runs slow (true in certain circumstances). It
doesn’t support this or that programming construct (it might eventually if it is
worthy enough). Every language has its warts, but Python is one of the few
languages that both trusts and puts the developer first. By trust, I mean that
Python doesn’t cut off your nose to spite your face. You generally won’t find
yourself jumping through hoops to make the language do what you want. It
doesn’t put you in a padded room to protect you from yourself (although it
doesn’t dangle you from a cliff like C can either).

By putting the developer first, I mean that Python puts your productivity first.
The key insight that the Python developers had (Guido in particular) is that a
developer spends most of his/her time reading code, not writing it. Getting up to
speed with someone else’s (and your own if you’ve been away from it for awhile)
code is easy because all of the stylistic choices have been made for you (no
arguing about brace styles, indenting, and function layout). This frees the
developer to focus on good code that does what it is supposed to, not extraneous
details that don’t matter much in the end.

Enough proselytizing. Let’s do some Python. Start by opening up ActiveState
Python by choosing Start — Programs — ActiveState ActivePython 2.4 -
Pythonwin IDE. The Python interpreter will open up in a document window.

1 PythonWin 2.4.1 (#65, Mar 30 2005, 09:33:37) [MSC v.1310 32 bit
(Intel)] on win32.Portions Copyright 1994-2004 Mark Hammond
(mhammond@skippinet.com.au) - see 'Help/About PythonWin' for further
copyright information.

2 >>>

The interpreter is the thing that runs your program. It combines the process of
compiling and running your code at the same time. You can run a Python
program in two ways — by opening up an interpreter and running it interactively,

or by calling the interpreter to run a program in a non-interactive mode (in the

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Intro to Python 6/16/2005

background).

We'll start with the ubiquitous “Hello World.”

3 >>> print "Hello World"
4 Hello World

Data Types

Here is some example code that demonstrates the three ultra-basic data types
that you'll need when working with Python.

5 >>> an integer = 3
6 >>> an_ integer

73

8 >>> a float = 3.0
9 >>> a float

103.0

11>>> a string = '3.0'

12>>> a string

13'3.0"

14>>> an integer + a float
156.0

16>>> an integer + an integer
176

18>>> a string + a float

19Traceback (most recent call last):

20 File "<stdin>", line 1, in °?

21TypeError: cannot concatenate 'str' and 'float' objects

Notice that attempting to add the string and float throws an exception called
TypeError. This error was thrown because Python can’t automatically coerce the
objects of type string and float. We can cast the string object into a float by
calling the float() method on it.

22>>> float(a string) + a float
236.0

Of course, if the string is really text and not numeric, the float() method method
will throw an exception complaining about it.

24>>> float('a')

25Traceback (most recent call last):

26 File "<stdin>", line 1, in °?
27ValueError: invalid literal for float(): a

Data Structures

Next, we'll cover the three basic data structures that you'll find when working

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Intro to Python 6/16/2005

with Python programs.

The first is a list. A list is your basic, integer indexed-based data structure.

28>>> a list = ['a','b',"'c']

29>>> another list = ['3', 3, 3.0]

Notice that another_list has objects of type string, integer, and float. Lists (actually
all of the data structures) can contain objects of heterogeneous type.

The second is a dictionary, or hash table. A dictionary is used when you want to
be able to access something by key, rather than by index alone. Use a dictionary
when you want to search through a large group of things, rather than interating
through a list and testing each member. Also thing to note is that a dictionary’s
keys are always strings (or hashable objects) and that duplicates are not allowed
(you can’t have two items in a dictionary with the key ‘a” for example).

30>>> a dictionary = {'a':1, 'b':2, 'c':3}
31>>> a dictionary['a']
321

The third major data type is the tuple. A tuple is just like a list, except that it
cannot have items added or removed from it once it is instantiated. One way to
think of a tuple is as a “read-only” type of list.

133>>> a_tuple = ('a','b','c')

Conditionals

Decisions, decisions, decisions... a program isn’t really a program unless you can
alter an operation based on some input. You universally do this with a
conditional statement. In Python, as with many languages, this is done using an
if...else construct.

34a string = 'a'

35if a string == 'a':

36 print 'it was a'

37else:

38 print 'it was not a'

39

40it was a

41if a string == 'a':

42 print 'it was a'

43elif a string == 'b':

44 print 'it was b'

45else:

46 print 'it was neither'

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Intro to Python 6/16/2005

47
48it was a

Notice that the print statements are indented underneath the conditional
statements. Python denotes code blocks with indentation, rather than using
curly braces or some other punctuation. As long as the code blocks are all evenly
indented, it will work. The convention is to use 4 spaces for indenting each code
block, and usually great care is taken to not mix in tabs and spaces to make it
easy to send code around the internet — compensating for the various system and
tab stops that might be out there.

Another important item to note here is that = is different than ==. One equals
sign is for assignment and two equals signs are for comparison. For example, this
code snippet isn’t going to do what you’d hoped for.

49>>> 1if a string = 'b':
50 File "<stdin>", line 1
51 if a string = 'b':
52 ~

53SyntaxError: invalid syntax

Loops

Computers are computers because they can do things a lot of times in a row and
they don’t complain about it. There are two ways to do a lot of things in a row in
Python. The first is a for loop and the second is a while loop.

‘54for item in a list:

55 print 'lowercase: ', item, 'uppercase: ', item.upper ()
56lowercase: a uppercase: A
571lowercase: b uppercase: B
58lowercase: c uppercase: C

Another way of printing the results is to use string interpolation. The string
substitution syntax is very similar to the printf substitution in C. If you find
yourself adding a lot of strings together into one larger one, use string
interpolation instead of the + operator. It will make things easier to read and
easier to change.

‘59for item in a list:
‘60 print 'lowercase: %s uppercase:%$s'% (item, item.upper())

Functions

Functions allow you to consolidate operations, eliminate code redundancy, and
clean up your code. Unlike other languages, functions in Python rely on

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 5
Intro to Python 6/16/2005

something that is casually called “duck typing.” Duck typing means “if it acts
like a duck and quacks like a duck, we’ll treat it like a duck.” Aslong as the
object passed into the function has the proper attributes and/or methods, the
function will happily call and work with it.

6ldef print it (astring):

62 print astring
63>>> print it ('Howard')
64Howard

A function is started with a def for define. Then comes the name and the list of
parameters inside of parenthesis. Our print_it function takes a single parameter,
astring, and prints it.

You can also define default arguments in function. This is commonly done to
reduce line noise in the code and allow flexibility.

65def print it two (astring, salutation="Mr."):

66 print salutation, astring

67>>> print it two ('Howard Butler')

68Mr. Howard Butler

69>>> print it two ('Cunningham', salutation="Mrs.")
70Mrs. Cunningham

Objects

In Python, everything is an object. This includes things like functions, class
definitions, and code itself. All of this object stuff doesn’t mean that you have to
program in an object-oriented way (unlike some languages like Ruby, for
example). You can still write a straight-ahead, linear program that manipulates
some text, or a module that is just a bunch of functions that are called in a specific
order.

Even though you aren’t required to program in an object-oriented way, it is
helpful to understand how to use objects in Python. All of the code that you'll
import and use, including stuff from the standard library, is arranged in objects.

I find it helpful when working with object-oriented code to think of verbs.
Objects have things, objects are things, and objects do things.

Have
Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Intro to Python 6/16/2005

When we say that objects have things, we mean that we use objects to carry
data. You will hear the words property and attribute to describe this. There
are slight differences between a property and an attribute of an object, but
in Python, for the most part, you shouldn’t have to care. Just remember
when someone says that an object has something, they are referring to the
data that it carries.

Are

When we say that objects are things, we mean that an object is of some type.
A type might sometimes be coerced into another type, or it might inherit
attributes and methods from a parent type (called a subclass or subtype).

Do

When we say that objects do things, we mean that we use objects to perform
an action on data. You will hear the words method or function to describe
this. It might perform this action on or using one of its own attributes or
data that you give it to act on.

You define an object by using the class keyword.

7lclass Bear:

72 def init (self, name='Yogi'):

73 self.name = name

74 def growl (self) :

75 print 'grrrr'

76 def eat (self, food):

77 print self.name, 'eats', food

78 def str (self):

79 return 'My name is %$s' % (self.name)

The first thing we do is define an __init__ method. __init__is a special or
“magic” method in Python in which we define the data the class will carry along
with it (or have). Note the use of a default method, with the Bear’s name
defaulting to Yogi. The __str__method defines what is returned when we try to
get a string representation of the Bear. In our case, we just return a string that
reports the Bear’s name...

growl and eat are methods that define something that the Bear class does.

80>>> yogi = Bear ()
81>>> yogi.eat ('tomatoes')

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 7
Intro to Python 6/16/2005

82Yogi eats tomatoes
83>>> yogi = Bear()

84>>> yogi.eat ('tomatoes')
85Yogi eats tomatoes
86>>> print yogi

87My name is Yogi

88>>> yogi.growl ()

89grrrr

We can find out more about what yogi is by asking its type with the type()
function.

90>>> type (yogi)
91<type 'instance'>

And we can check what type it is by comparing it to its class.

92>>> isinstance (yogi, Bear)
93True

Modules and Packages

Python Module

A module is a file containing Python statements with a .py extension. Modules
are used to reduce the amount of typing you do at the interpreter prompt, and,
of course, to reuse code in different applications.

For example, with an editor create a new file called wkt . py in your current
directory and type into it the following;:

def wktpoint(x, Vy):
return 'POINT (%f %f)' % (%, V)

This defines a function which takes a coordinate in the form of two floats,
interpolates the coordinate values into a well-known text representation of a
point, and returns this string.

The module is loaded using a Python import statement

>>> import wkt
dropping the .py extension, and afterwards the function is callable using :
Howard Butler and Sean Gillies Open Source Geospatial '05

© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 8
Intro to Python 6/16/2005

>>> wkt.wktpoint (1, 2)

'"POINT (1.000000 2.000000)"

>>>
Notice that after you import the wkt module, your current directory now
contains a wkt . pyc file. This is the module as compiled bytecode, and speeds up
the next import of the module. The Python interpreter compares the timestamps

on the compiled and source module so that it is recompiled whenever the source
has been changed.

Module Search Path

Note that we didn't specify any path to the wkt module. How is it found? By
default Python will search for files in the following directory order:

1. current directory (interpreter prompt) or directory of the input script
2. directories specified in the PYTHONPATH environment variable

3. installation-dependent system paths, such as c: \python24\1ib for the
library of standard modules and c: \python24\1lib\site-packages for
installed non-standard modules.

The PYTHONPATH variable is useful with uninstalled bundles such FWTools.

The dir() function

The built-in dir() function returns a sorted list of the names defined in a module.
This is all names: variables, functions, classes. Using our wkt.py as an example:

>>> import wk
>>> dir (wkt)

[' builtins ', ' doc ', ' file ', ' mname ‘',
'wktpoint']
>>>

The first four names are common to all modules and then there is our wktpoint
function.

Finding Module Constants

A module is a great place to keep constants, and all of our GIS modules define a
few. If you want to see all the mapscript integer constants and their values:

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 9
Intro to Python 6/16/2005

>>> from mapscript import mapscript
>>> [(n, eval ('mapscript.%s' % (n))) \
for n in dir (mapscript) \

if type(eval ('mapscript.%s' % (n))) == type(l)]

('FTDouble', 2), ('FTInteger', 1), ('FTInvalid', 3),
'"FTString', 0), ('MAX PARAMS', 10000),

[
(
("MESSAGELENGTH', 2048), ('MS AUTO', 9), ('MS BITMAP', 1),
('MS_CC', 8), ('MS _CGIERR', 13), ('MS CHILDERR', 31),
('MS_CJC_BEVEL', 1), ...]
the eval function evaluates a string as a Python expression. For example:
>>> eval ('l + 1)
2
>>>

we use it above within a Python list comprehension to generate a list of names,
filter those that have integer type values and return the name and value as a
tuple. List comprehensions are an increasingly popular Python construction. The
one above is quite complex. Here are simpler examples that build up to the same
level of complexity:

>>> [x for x in [1, 2, 3]1]

(1, 2, 3]

>>> [(x, 2*x) for x in [1, 2, 31]]

[(1, 2), (2, 4), (3, 6)]

>>> [(x, 2*x) for x in [1, 2, 3] 1if x > 1]

[(2, 4), (3, 6)]

Packages

A package is a directory of modules and allows us to structure the module
namespace. It also allows developers to avoid module name conflicts. We can all
have our own geometry module as long as its contained within a unique
package.

Previously we imported the mapscript module from the mapscript package
>>> from mapscript import mapscript
Another example is the xml package from the standard library. Browse to

C:\Python24\Lib\xml and note that it contains, among other things, sax and
dom sub-packages. This separation is for efficiency as much as namespace

Howard Butler and Sean Gillies Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 10
Intro to Python 6/16/2005

structure, as the SAX and DOM approaches to XML are not usually combined in
a single application, and there's no point in loading a module that won't be used.

Howard Butler and Sean Gillies Open Source Geospatial '05

© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 1
Geometry Operations: OGR and GEOS 6/16/2005

Geometry Operations: OGR and GEOS
The GEOS library

http://geos.refractions.net

provides the spatial predicates originally used in PostGIS, now OGR, and soon
MapServer. In this exercise we'll explore unions, intersections, differences,
buffers, and work our way up to the task of creating a buffered union of many
features from a shapefile.

Matplotlib

Along the way we are going to use the matplotlib package for visualization of
our results. This is matlab-like software that is attracting a lot of attention from
Python users. If we have time at the end of the workshop, some of you may be
interested in digging deeper into matplotlib.

>>> from matplotlib import pylab

>>> pylab.plot ()

[]
>>> pylab.show ()

This creates an output window into which we'll render geometries.

Geometries

Let's create two simple, overlapping polygons using the same string
interpolation and WKT factory method as in the previous exercise:

>>> rl = {'minx': -5.0, 'miny': 0.0, 'maxx': 5.0, 'maxy':
10.0}

>>> r2 = {'minx': 0.0, 'miny': -5.0, 'maxx': 10.0, 'maxy':
5.0}

>>> template = 'POLYGON ((% (minx)f % (miny)f, $(minx)f %
(maxy) £, % (maxx)f $(maxy)f, %(maxx)f % (miny)f, $(minx)f %
(miny) £)) '

>>> wl = template $ rl

>>> w2 = template % r2

You could print these to verify. Next we import the ogr module and use its WKT
factory to create instances of ogr.Geometry:
>>> from gdal import ogr

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Geometry Operations: OGR and GEOS 6/16/2005

>>> gl = ogr.CreateGeometryFromWkt (wl)

>>> g2 = ogr.CreateGeometryFromWkt (w2)

Plotting

Initially we downloaded a helper file named plot.py. It contains two functions
for plotting geometries in the matplotlib window.

>>> from plot import plot poly, plot line

>>> plot poly(gl, color='green', alpha=0.25)

>>> plot poly (g2, color='blue', alpha=0.25)

The result should be something like

Figure 1

[+ Jm]

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Geometry Operations: OGR and GEOS 6/16/2005

Intersection

Let's try the Intersection () and Buffer () methods of ogr.Geometry first.
>>> inter = gl.Intersection (g2)
>>> buffered inter = inter.Buffer (0.5)

>>> plot line (buffered inter, color='red')

The result:

Figure 1

Union

Now the Union () method.
>>> union = gl.Union (g2)
>>> buffered union = union.Buffer (1.0)
>>> plot line (buffered union, color='cyan')
Howard Butler and Sean Gillies Open Source Geospatial '05

©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Geometry Operations: OGR and GEOS 6/16/2005

and the results

(=
12 : : .
10+ |
8l |
6t |
al |
2t |
ot |
2t |
At |
7 4 2 0 2 4 6 8 10 12

2[O[O]+|-

Lifelike Geometries

Let's close up that output window and move on to less artificial geometries. At
c:\ms4w \ python\ data\ world_borders.shp is a world borders shapefile
derived from VMAPO by Schuyler Erle, Rich Gibson, and Jo Walsh. We'll use the
OGRFeaturelterator class from the fiter.py helper module to select several of the
features from this shapefile:

>>> from fiter import OGRFeaturelterator
>>> filename = r'c:\ms4w\python\data\world borders.shp'
Now, define a spatial bounding box and an OGR attribute filter to constrain

features. The GEOS Union () operation is very slow, and we don't want to wait
for too many polygons.

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Geometry Operations: OGR and GEOS 6/16/2005
>>> bounds = (-10.0, 30.0, 20.0, 60.0)
>>> attrfilter = "fips cntry = 'UK'"

Next, we create a list to hold selected features, and declare the name u, for our
union geometry, to begin with the value None.

>>> geoms = []

>>> u = None
The following iteration appends each selected geometry g and builds up the
union of all selected geometries. Iterators are a very common construct, and a big

component of Python flavor. The 1f/else blocks below ensure that we begin
our union geometry as the clone of a selected geometry, and clone only once.

>>> for g in OGRFeaturelterator (filename, bounds,
attrfilter) :

geoms .append (g)

if u:

u u.Union (g)
else:

u = g.Clone ()

>>>
Now, let's plot the selected geometries using the previously imported
plot poly () function.

>>> for g in geoms:

plot poly(g, color='green', alpha=0.25)

>>>
the result
Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Geometry Operations: OGR and GEOS 6/16/2005

Figure 1

-

Now, buffer the union and plot it. This is a fairly lengthy operation ...
>>> buffer = u.Buffer(1.0)

>>> plot line (buffer, color='red')

>>>
The results
Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7
Geometry Operations: OGR and GEOS 6/16/2005

=10l x|

£e ' ' ! I_. ' I

B0 — = / .
S8 | :' N J
. | \ 1
sal Sy 7

52 4]

45 1 L Il 1 1 Il
-10 -8 -6 -4 -2 0 2 4

‘D|0|O|-I*| s |ﬂ| 4=05, y=48.8

Continuation

In the workshop's extra time, some of you may want to try saving these
geometries to a file using ogr.py as we did in the previous tileindex exercise, and
display them in OpenEV. Some may be interested in grabbing some features via
WES and plotting them in the same window with the buffered UK features.

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 1
Geocoding 6/16/2005

Geocode an address and plot it on an orthophoto in the
coterminous US using MapScript

You want to use Python MapScript to geocode addresses and return a DOQ
map with the address plotted on it as a point.

Geocoding is very popular these days. Users frequently ask questions on the
MapServer list how to incorporate geocoding into existing applications.
Websites like MapQuest, Yahoo! Maps, and Google Maps have popularized the
concept of using an address as an initial map navigation tool.

The process of geocoding, or turning a street address into a longitude/latitude
pair, is a difficult one. It requires two key components - complete and
specialized data, and algorithms to turn that data into coordinates. Luckily,
Schuyler Erle of Mapping Hacks has an Open Source geocoding solution available.
Using the US Census Tiger street data, http://geocoder.us provides Perl
software and a SOAP and XMLRPC remote query mechanism for geocoding.
This means you can download your own copy of the Tiger database and provide
geocoding for your own commercial applications. (In fact, if you plan to use the
software commercially, you must build your own database rather than utilizing
the remote query interface provided by geocoder.us.)

Getting a lat/lon for an address

We will be using the remote query functionality of geocoder.us today. Start by
importing the xmlrpc library and setting up a proxy to geocoder.us’s XMLRPC

service.
1 import xmlrpclib
2 geocode url = 'http://rpc.geocoder.us/service/xmlrpc'
3 p = xmlrpclib.ServerProxy (geocode url)
4 address = "615 WASHINGTON AVE SOUTHEAST, MINNEAPOLIS, MN"
Next, execute a call to the XMLRPC service
5 result = p.geocode (address)
6 print result
7 C:\>geocode.py
8 [{'city': 'Minneapolis', 'prefix': '', 'suffix': 'SE', 'zip': 55455,
'number': 6
9 15, 'long': -93.229894000000002, 'state': 'MN', 'street': 'Washington',
'lat': 4

10 4.973664999999997, 'type': 'Ave'}]

Just like that, we have our coordinates. The XMLRPC service returns a list of
dictionaries that we can use to get our coordinate information. Next, we'll
import mapscript and setup a mapObj that will draw our map.

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Geocoding 6/16/2005

Generating a basic DOQ map with TerraServer and MapScript

11 try:

12 import mapscript.mapscript as mapscript

13 except ImportError:

14 import mapscript

15

16 amap = mapscript.mapObj ()
Our mapObj is named amap because map is a function name in python.
Normally, you would instantiate a mapObj with an existing mapfile. In our case,
however, we want the entire thing to be self-contained in the script. We will
build up our mapObj, layerObj’s, and styling all in mapscript...
The other kind of funny thing we do here compensates for the way the mapscript
package is installed on the workshop machines. We try to import our workshop
mapscript, and if it isn’t there in the package format, we just try to import it the
regular way.

17 amap.height = 800

18 amap.width = 1100

19

20 debug =1

21 ms_debug = 0

22

23 if ms_ debug:

24 amap .debug = mapscript.MS ON

25 amap.setProjection('init=epsg:2163")
We next define our map width and height. In addition, we define some
debugging variables. This will allow us to see and set some diagnostics as we
develop that we can easily turn off once we have a finished script. A more
sophisticated approach would utilize Python’s logging module, but this is a short
hack, right?

26 lat, lon = result[0]['lat'], result[O0]['long']

27 pt = mapscript.pointObj ()

28 pt.x = lon

29 pt.y = lat

30

31 if debug:

32 Pringt Yes===== DD Coordinates -—------- !

33 print 'x: %s y: %s' $ (pt.x, pt.y)

34 PELAE !osomcocsoocooooosoosoosossosooss !

We need to take the coordinates that the geocoder gave us and turn them into a
pointObj. We'll project that point into our mapObj’s coordinate system, use it to
define the extent of the map, and then use it to plot a point showing the location
of the address.

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 3

Geocoding 6/16/2005
35 ddproj = mapscript.projectionObj ('proj=latlong,ellps=WGS84")
36 origproj = mapscript.projectionObj (amap.getProjection ())
37 pt.project (ddproj,origproj)
38
39 if debug:
40 Pringt Ve==== Albers Coordinates ----- !
41 print 'x: %s y: %s' $ (pt.x, pt.y)
42 PELRE !ormsoooooooomommonon oo msme s e e !
Now that we’ve projected a point into our mapObj’s coordinate system, we’ll
make an extent by adding some buffer (in map units, not decimal degrees).
43 buffer = 600
44 extent = mapscript.rectObj ()
45 extent.minx = pt.x - buffer
46 extent.miny = pt.y - buffer
47 extent.maxx = pt.x + buffer
48 extent.maxy = pt.y + buffer
49 amap.setExtent (extent.minx, extent.miny,
50 extent.maxx, extent.maxy)
The last few mapODbj properties we need to set have to do with the output format
and giving the webObj a place to store temporarily downloaded WMS requests.
551 outputformat = mapscript.outputFormatObj ('GD/JPEG')
552 amap.setOutputFormat (outputformat)
. 53
554 amap.web.imagepath = os.environ['TEMP']
Now that we have a mapObj, we create a layerObj to describe the TerraServer
WMS connection. The gotchas here to remember are to make sure you set
metadata for the wms_srs and wms_title and make sure to set the projection of the
layer to EPSG 4326.
55 layer = mapscript.layerObj (amap)
56 layer.connectiontype = mapscript.MS WMS
57 layer.type = mapscript.MS LAYER RASTER
58 layer.metadata.set ('wms_srs', 'EPSG:4326")
59 layer.metadata.set ("wms title", "USGS Digital Ortho-Quadrangles")
60 ts url =
"http://terraservice.net/ogcmap.ashx?VERSION=1.1.1&SERVICE=wms&LAYERS=DOQ&F
ORMAT=jpegé&styles="
61 layer.connection = ts url
62 layer.setProjection('init=epsg:4326")
63 layer.status = mapscript.MS ON

Currently, we have a map with only a black and white orthophoto from
TerraServer, centered on the latitiude/longitude point that geocoder.us returned
to us. Pretty boring, I admit.

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Geocoding 6/16/2005

264 img = amap.draw ()

65 f = open(r'c:\foo.jpg','wb')

566 f.write(img.getBytes ())

567 f.close ()
Symbology
MapScript doesn’t currently support the ability to add a FontSet using only
MapScript...it needs a mapObj that was defined from a mapfile to do that. This
ability will be added in the near future. Because we're attempting to build a map
with no maptfile, we'll instead use a pixelmap as our symbol. We won’t use one
on our local machine, however - we'll use urllib2 and StringlO to download and
save our pixelmap symbol and dynamically incorporate it in our map.
I googled for a house symbol on Google’s image search. I found one at
http:/ /www.worldcommunitygrid.org/images/agent/house.jpg, but you could
substitute any URL to a small jpg that you wanted. Next, we'll download the
image and stuff it into a cStringlO instance. This will allow MapScript’s image
reading machinery to treat it as it would any normal file.

268 url = 'http://www.worldcommunitygrid.org/images/agent/house.jpg'

569 f = urllib2.urlopen(url) .read()

§7O f = ¢cStringIO.StringIO (f)
The next bits were cribbed from
http:/ /ms.gis.umn.edu/docs/howto/mapscript imagery. We create a new
symbol, set it to type MS_SYMBOL_PIXMAP, give the symbol the imagery, and
append it to the mapObj’s symbolset.

271 symbol = mapscript.symbolObj ('from img')

. 72 symbol.type = mapscript.MS SYMBOL PIXMAP

73 img = mapscript.imageObj (f)

74 symbol .setImage (img)

75 symbol index = amap.symbolset.appendSymbol (symbol)
With the symbol in hand, we can now go through the process of creating a point
and a MS_INLINE layer to place our house pixelmap on the map. We first have
to build up a shapeObj. shapeObjs are composed of lineObjs, which themselves
are composed of points.

276 line = mapscript.lineObj ()

577 line.add (pt)

78 shape=mapscript.shapeObj (mapscript.MS SHAPE POINT)

© 79 shape.add(line)

§8O shape.setBounds ()

Now that we have our shapeObj, we can build up an inline layer, add our point
to it, and set some properties on the layer.
Howard Butler and Sean Gilles Open Source Geospatial '05

© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Geocoding 6/16/2005

81 inline layer = mapscript.layerObj (amap)

82 inline layer.addFeature (shape)

83 inline layer.setProjection (amap.getProjection())

84 inline layer.name = "housept"

85 inline layer.type = mapscript.MS LAYER POINT

86 inline layer.connectiontype=mapscript.MS INLINE

87 inline layer.status = mapscript.MS ON

88 inline layer.transparency = mapscript.MS GD ALPHA
With our layer built, we can add our symbology to it. Notice we create a
classObj on the inline layer, give it a name, and then create a styleObj that points
to our symbol. This is the preferred way of doing styling in MapScript (styleObjs
inside of classObjs) instead of merely putting the symbology on the classObj;.

89 cls = mapscript.classObj (inline layer)

90 cls.name='classname'

91 style = mapscript.styleObj (cls)

92 style.symbol = amap.symbolset.index('from img')
Finally, draw our map again and save it to a temporary file.

93 img = amap.draw()

94

95 f = open(r'c:\temp\foo.jpg', 'wb')

96 f.write (img.getBytes())

97 f.close ()

Figure 1. Our final output.

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Geocoding 6/16/2005

Code Listing

O J oy O W N

BSOS DS S DS DS DD WWWWWWWwwww NN NDNNNNPRERPREPREPREPRPRERERERPRE R R B
O 0 Jo Ul WNDEHE OWOWJoY Ul dWNEOWOLO--ToU b WDNEFE O WOW-Jou »whN ke O

Geocoding and MapScript
(c) 2005 Howard Butler
hobu@iastate.edu

import os
import xmlrpclib

geocode our address

geocode url = 'http://rpc.geocoder.us/service/xmlrpc'
p = xmlrpclib.ServerProxy (geocode url)
address = "615 WASHINGTON AVE SOUTHEAST, MINNEAPOLIS, MN"

result = p.geocode (address)
print result

import mapscript as package first ... then the regular way
try:

import mapscript.mapscript as mapscript
except ImportError:

import mapscript

amap = mapscript.mapObj ()

amap.height = 800
amap.width = 1100

debug = 1
ms_debug = 0

if debug:
print
print '------- Address -——————-- !
print '$s' $ address
PELIRE !orororomoosmsmommomom e o= !

if ms_ debug:
amap .debug = mapscript.MS ON

set projection to US laea
amap.setProjection('init=epsg:2163")

grab the first address geocoder.us gives back to us
and turn it into a pointObj

lat, lon = result[0]['lat'], result[O0]['long']

pt = mapscript.pointObj ()

pt.x = lon

pt.y = lat
Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7

Geocoding 6/16/2005

50

51 if debug:

52 Print Ves===== DD Coordinates -—------- !

53 print 'x: %s y: %s' $ (pt.x, pt.y)

54 PELAE !osoecocsoococooosoosoosossasosss !

55

56 # project our point into the mapObj's projection

57 ddproj = mapscript.projectionObj ('proj=latlong,ellps=WGS84"')

58 origproj = mapscript.projectionObj (amap.getProjection())

59 pt.project (ddproj,origproj)

60

61 if debug:

62 Pringt Ve==== Albers Coordinates ----- !

63 print 'x: %s y: %s' $ (pt.x, pt.y)

64 PELAE !osoecocsoococooosoosoosossasosss !

65

66 # create an extent for our mapObj by buffering our projected

67 # point by the buffer distance. Then set the mapObj's extent.

68 buffer = 600

69 extent = mapscript.rectObj ()

70 extent.minx = pt.x - buffer

71 extent.miny = pt.y - buffer

72 extent.maxx = pt.x + buffer

73 extent.maxy = pt.y + buffer

74 amap.setExtent (extent.minx, extent.miny,

75 extent.maxx, extent.maxy)

76

77 # set the output format to jpeg

78 outputformat = mapscript.outputFormatObj ('GD/JPEG')

79 amap.setOutputFormat (outputformat)

80

81 # give the WMS client a place to put temp files

82 amap.web.imagepath = os.environ['TEMP']

83

84 # define the TerraServer WMS layer

85 layer = mapscript.layerObj (amap)

86 layer.connectiontype = mapscript.MS WMS

87 layer.type = mapscript.MS LAYER RASTER

88 layer.metadata.set ('wms_srs', 'EPSG:4326")

89 layer.metadata.set ("wms title", "USGS Digital Ortho-Quadrangles")

90 ts url =
"http://terraservice.net/ogcmap.ashx?VERSION=1.1.1&SERVICE=wmns&LAYERS=DOQ&F
ORMAT=jpegé&styles="

91 layer.connection = ts url

92 layer.setProjection('init=epsg:4326")

93 layer.status = mapscript.MS ON

94 if ms_ debug:

95 layer.debug = mapscript.MS ON

96

97 # import the libraries we'll need to make our pixelmap symbol

98 import urllib2

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 8
Geocoding 6/16/2005

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

import cStringIO

get a jpeg image from somewhere on the web and read it into

a StringIO.

url = 'http://www.worldcommunitygrid.org/images/agent/house.jpg'
f = urllib2.urlopen(url) .read()

f = ¢cStringIO.StringIO (f)

create the symbol using the image

symbol = mapscript.symbolObj ('from img')
symbol.type = mapscript.MS SYMBOL PIXMAP

img = mapscript.imageObj (f)

symbol.setImage (img)

symbol index = amap.symbolset.appendSymbol (symbol)

create a shapeObj out of our address point so we can
add it to the map.

line = mapscript.lineObj ()

line.add (pt)

shape=mapscript.shapeObj (mapscript.MS SHAPE POINT)
shape.add (line)

shape.setBounds ()

create our inline layer that holds our address point
inline layer = mapscript.layerObj (amap)

inline layer.addFeature (shape)

inline layer.setProjection (amap.getProjection ())
inline layer.name = "housept"

inline layer.type mapscript.MS LAYER POINT

inline layer.connectiontype=mapscript.MS INLINE

inline layer.status = mapscript.MS ON

inline layer.transparency = mapscript.MS GD ALPHA

add the image symbol we defined above to the inline
layer.

cls = mapscript.classObj (inline layer)
cls.name="'classname'

style = mapscript.styleObj (cls)

style.symbol = amap.symbolset.index('from img')

draw the map and save it somewhere.
img = amap.draw ()

f = open(r'c:\temp\foo.jpg', 'wb")
f.write(img.getBytes ())

f.close()

Howard Butler and Sean Gilles Open Source Geospatial '05
© Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 1
Raster Data Aggregation 6/16/2005

Creating Aggregate Rasters for MapServer or GDAL

MapServer tileindex and GDAL VRT

Tileindexes

Although the gdaltindex utility meets the needs of most users, creating a
tileindex shapefile is a good introduction to gdal.py. It can also be useful to have
a tileindex file with more attributes for reuse in your map.

os.path

The os.path module implements functions on pathnames. Create a new text file
in your working directory named hobu. txt. No contents are needed. We'll use
this file to explore os . path.
The abspath function returns the absolute path given a relative path.
>>> import os.path
>>> os.path.abspath('./hobu.txt")
'P:\\0SG05\\aggregation\\hobu. txt'
>>>
The basename function returns the filename with all directories stripped from
the path.
>>> os.path.basename ('P:\0SG05\aggregation\hobu.txt")
"hobu.txt'
>>>

the getctime function returns the file creation time in seconds past the epoch
>>> os.path.getctime ('hobu.txt')
1118386365
>>>

glob
Just like a shell glob. glob.glob returns a possibly empty list of paths that
match the input pattern:

>>> import glob

>>> glob.glob ('"*.txt")

['hobu.txt"']
Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Raster Data Aggregation 6/16/2005

>>>

Putting it together

Now we'll combine these to print information about a batch of files:
>>> for path in glob.glob('*.txt'):
print os.path.basename (path), \
os.path.abspath (path), \
os.path.getctime (path)

hobu.txt P:\0SG05\aggregation\hobu.txt 1118386365
>>>
And now we'll try this on the workshop raster data. Replace the pattern below
with the path to the workshop data:
>>> paths = glob.glob ('P:\0SG05\python-tests\data*.tif")
>>> for path in paths:
print os.path.basename (path), \
os.path.abspath (path), \
os.path.getctime (path)

escalante30 zip.tif P:\0SGO5\python-
tests\data\escalante30 zip.tif 1044213876

mtnwest zip.tif P:\0SGO05\python-tests\data\mtnwest zip.tif
1044212332

waterpocket30 zip.tif P:\0SGO5\python-
tests\data\waterpocket30 zip.tif 104421366

6

zion30 zip.tif P:\0SGO5\python-tests\datal\zion30 zip.tif
1044211340

cameron30 zip.tif P:\0SGO5\python-
tests\datal\cameron30 zip.tif 1044129070

wasatch30 zip.tif P:\0SGO05\python-
tests\data\wasatch30 zip.tif 1044129100

>>>
Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Raster Data Aggregation 6/16/2005

gdal

OK, so we can obtain all kinds of OS info about the raster data. Now we'll get to
the the important geo properties using GDAL's gdal Python module.

In the following steps, don't bother with typing the paths. Type the leading

quotation mark, drag the file from the file explorer to the interpreter, and the

close the quotes.

Let's open one of the workshop raster files in the default read-only mode:
>>> from gdal import gdal

>>> dataset = gdal.Open ('P:\0SG05\python-
tests\data\cameron30 zip.tif')

>>> dataset

<gdal.gdal.Dataset instance at 0x008E48C8>

>>>
The gdal module is extensive. In this exercise we're going to limit ourselves to
the following attributes of a Dataset:

>>> dataset.RasterCount

3

>>> dataset.RasterXSize

999

>>> dataset.RasterY¥YSize

1586

>>> dataset.GetGeoTransform()

(-106.05969999999999, 0.00027777777777799998, 0.0,
40.842500000000001, 0.0, -0.0

0027769230769199998)
>>>

These are the number of bands, the number of pixels and lines, and the geo
transform parameters. The elements at indexes 0 and 1 of this tuple are the upper
left x value and the x pixel size. The elements at indexes 3 and 5 are the upper left
y value and -1 times the y pixel size.

Let's use these properties and methods to compute the bounding boxes for our
raster data files:

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Raster Data Aggregation 6/16/2005

>>> paths = glob.glob('P:\0SG05\python-tests\data*.tif"'):
>>> for path in paths:
ds = gdal.Open (path)

geo = ds.GetGeoTransformy()

pixels = ds.RasterXSize
lines = ds.RasterYSize

minx = geo[0]

maxx = minx + pixels * geol[l]

maxy = geo|[3]

miny = maxy + lines * geol[5]

... print os.path.basename (path), (minx, miny, maxx,
maxy)
escalante30 zip.tif (-111.705, 37.686388888056207,
-111.22944443999971, 38.06583

3333055551)

mtnwest zip.tif (-115.5, 36.50000000000022,
-103.50000000000048, 42.0)

waterpocket30 zip.tif (-111.28472222194445,
37.298055554999578, -110.72666665999

982, 38.340000000000003)

zion30 zip.tif (-113.21111111, 37.106111111111382,
-112.74444443999984, 37.63166

6666111109)

cameron30 zip.tif (-106.05969999999999,
40.402080000000488, -105.78219999999978,

40.842500000000001)

wasatch30 zip.tif (-111.85889999999999, 40.38999999999951,
-111.40639999999964,

40.77028)
>>>
There's no close method for a GDAL dataset. The dataset is closed at the end of

the interior block above when Python's garbage collection sweeps out the local
ds object. You might want to be explicit about it, appending

del ds
to the end of the block.
Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5
Raster Data Aggregation 6/16/2005
ogr

That's all we need from gdal.py in order to create our raster tileindex. Now
we'll need to learn to create an output vector dataset and push features into it.
Here, in a nutshell, is creation and saving of a polygon type shapefile using
GDAL's ogr.py module:

>>> from gdal import ogr
>>> driver = ogr.GetDriverByName ('ESRI Shapefile')

>>> tileindex shp = driver.CreateDataSource
('"tileindex.shp')

>>> tileindex = tileindex shp.Createlayer('tileindex',
geom_ type=ogr.wkbPolygon)

>>> tileindex shp.Destroy ()

>>>
The Destroy method is more bark than bite. It doesn't delete the file on disk, just
closes the output stream and releases allocated memory. Look in your working

directory and you will find a shapefile — a rather pointless shapefile with no
records, no fields.

Shapefile fields

Let's address that now. Delete the three shapefile components, and repeat the
following lines. Try using your interpreter's command history.

>>> tileindex shp = driver.CreateDataSource
('tileindex.shp')

>>> tileindex = tileindex shp.Createlayer('tileindex',
geom type=ogr.wkbPolygon)

Next we'll define a string type field named 'location’ and set its width to 200
characters:
>>> field = ogr.FieldDefn('location', ogr.OFTString)
>>> field.SetWidth (200)
and add this field to the layer
>>> tileindex.CreateField(field)
0

we'll leave the data source open.

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Raster Data Aggregation 6/16/2005

Adding Features

A record in our shapefile layer is represented by ogr's Feature class. The
constructor requires a FieldDefn argument, and we obtain one from the layer
itself. The value of our single 'location' field is set using the feature's SetField
method. Note the return of the abspath function and our hobu. txt file.

>>> feature = ogr.Feature(tileindex.GetLayerDefn ())
>>> feature.SetField (0, os.path.abspath ('hobu.txt'))

A complete feature needs a geometry. We won't dive too deep into ogr.Geometry
yet, but will use Python's string interpolation to hack a WKT (well-known text)
string and exploit ogr's WKT geometry factory. This time we are using a Python
mapping as the object of the interpolation operator instead of a tuple as we did
earlier:

>>> wkt = 'POLYGON ((% (minx)f % (miny)f, % (minx)f % (maxy) f,
% (maxx) f % (maxy)f, $(maxx)f $(miny)f, % (minx)f % (miny)f))'
>>> wkt = wkt % {'minx': -10, 'miny': -10, 'maxx': 10,
'maxy': 10}

>>> wkt

'POLYGON ((-10.000000 -10.000000, -10.000000 10.00000OC,
10.000000 10.000000, 10.000000 -10.000000, -10.000000
-10.000000))"

Next we create an ogr.Geometry from this string and set the feature's geometry
from it:
>>> geom = ogr.CreateGeometryFromWkt (wkt)

>>> feature.SetGeometryDirectly (geom)
0

create a new feature in our layer based upon this one, and close the data source.
>>> tileindex.CreateFeature (feature)

0

>>> tileindex shp.Destroy ()

Open the shapefile in OpenEV to see the results.

Aside for mapscript users
The mapscript.pointObj and mapscript.rectObj classes each have magic
methods to support Python's built in str () function. Give these a quick try:

>>> from mapscript import mapscript

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 7
Raster Data Aggregation 6/16/2005

>>> p = mapscript.pointObj (1, 2)

>>> str (p)

" 'x': 1, 'y': 2, 'z': 0 "

>>> r = mapscript.rectObj (-10,-10,10,10)

>>> str(r)

"{ 'minx': -10 , 'miny': -10 , 'maxx': 10 , 'maxy': 10 }"
>>>

Hey, what do you know? Looks a lot like a Python dict, and with the help of the

built in eval () function, we can turn it into a dict and interpolate the values into
a WKT string:

>>> wkt = 'POLYGON ((% (minx)f $(miny)f, % (minx)f % (maxy)f,
% (maxx) f % (maxy)f, %$(maxx)f $(miny)f, % (minx)f % (miny)f))"'

>>> wkt = wkt % eval(str(r))
>>> wkt

'"POLYGON ((-10.000000 -10.000000, -10.000000 10.000000,
10.000000 10.000000, 10.000000 -10.000000, -10.000000
-10.000000))"

>>>

Complete tileindex script

A complete tileindexing script is included in the workshop at
c:/ms4w/apps/python/aggregation/aggtindex.py and can be run using the
accompanying aggregation.bat file. Aim it at the workshop raster files in
c:/ms4w/apps/python/python/data and check the results again in OpenEV.

Virtual Datasets

GDAL's virtual dataset, or VRT, driver is a means of (among other things)
aggregating raster data. The document at http://www.gdal.org/gdal vrttut.html
describes how to express a virtual dataset using XML. We're going to create a
VRT that aggregates the workshop raster files, allowing them to be visualized or
processed as if they were a single dataset.

XML and Elementtree

Python has a standard XML library, and a great range of other available libraries
for parsing and writing XML. The elementtree package

http://effbot.org/zone/element-index.htm

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 8
Raster Data Aggregation 6/16/2005

is a good match for VRT's lightweight XML.

Here's a very simple example that's easy to type in the interpreter:

>>> from elementtree.ElementTree import Element,
SubElement

>>> html = Element ('html')

>>> body = SubElement (html, 'body')

>>> heading = SubElement (body, 'hl'")

>>> heading.text = 'Introducing ElementTree'
>>> para = SubElement (body, 'p')

>>> para.text = 'Package for manipulating hierarchical
data'

Now let's import the tostring function so that we can see how this is encoded:
>>> from elementtree.ElementTree import tostring
>>> tostring (html)

'<html><body><hl>Introducing ElementTree</hl><p>Package
for manipulating hierarchical data</p></body></html>"

On second thought, let's add some CSS to demonstrate element attributes:
>>> head = SubElement (html, 'head')
>>> style = SubElement (head, 'style')
>>> style.attrib['type'] = 'text/css'
>>> style.text = 'Hl{color:red} P{color:blue}'
>>> from elementtree.ElementTree import tostring
>>> tostring (html)

'<html><body><hl>Introducing ElementTree</hl><p>Package
for manipulating hierarchical data</p></body><head><style
type="text/css">Hl{color:red} P{color:blue}

</style></head></html>"

and then use the ElementTree class to write this to a file
>>> from elementtree.ElementTree import ElementTree
>>> tree = ElementTree (html)
>>> tree.write ('example.html')

Open example.html in a web browser. Minus the standard preamble, it's
XHTML, and easy to generate using elementtree.

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 9
Raster Data Aggregation 6/16/2005

Easy VRT

For a first example, we're going to quickly create a VRT that simply proxies a
single band of one of our workshop rasters much like in the first example on the
VRT tutorial page.

>>> from gdal import gdal

>>> ds = gdal.Open
(r'c:\ms4w\python\data\wasatch30 zip.tif')

>>> geo = ds.GetGeoTransform ()
>>> pixels = ds.RasterXSize
>>> lines = ds.RasterYSize
You could print the values of these if you wanted. That's all we need from gdal,
and now we begin by creating our top level element:
>>> vrt elem = Element ('VRTDataset',
rasterXSize=str (pixels),
rasterYSize=str(lines))
Note that all Element attributes must be strings. Next we add a GeoTransform

SubElement and set its text node to a string representation of the raster
dataset's geotransform.

>>> geo _elem = SubElement (vrt elem, 'GeoTransform')

>>> geo elem.text = 'Sf, %f, %f, %f, %f, Sf' % (geo)
Next we'll add a band element to the root

>>> band elem = SubElement (vrt elem, 'VRTRasterBand',
dataType="'Byte', band='1")

and then take a preview of our VRT under construction

>>> tostring(vrt elem)

'<VRTDataset rasterXSize="1629"
rasterYSize="1369"><GeoTransform>-111.858900, 0.000278,
0.000000, 40.770280, 0.000000,
-0.000278<GeoTransform><VRTRasterBand band="1"
dataType="Byte" /></VRTDataset>'

Only thing left to do is to define the source data for the band. This involves
several new levels of sub elements. Take care that they are subbed from the
proper parent element. If you mistakenly insert an element into another, you can
take advantage of the fact that all Elements are list-like and delete the sub
element at a certain index.

>>> source elem = SubElement (band elem, 'SimpleSource')

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 10
Raster Data Aggregation 6/16/2005

>>> filename elem = SubElement (source elem,
'SourceFilename', relativeToVRT='0")

>>> filename elem.text =
r'c:\ms4w\python\data\wasatch30 zip.tif'

>>> sband elem = SubElement (source elem, 'SourceBand')
>>> sband elem.text = '1'

>>> srect elem = SubElement (source elem, 'SrcRect',
xO0ff="'0"', yOff='0"', xSize=str (pixels), ySize=str(lines))

>>> drect elem = SubElement (source elem, 'DstRect',
xO0ff='0"', yOff='0', xSize=str (pixels), ySize=str(lines))

Now let's wrap this up in an ElementTree and write it to disk.
>>> vrttree = ElementTree (vrt elem)
>>> vrttree.write('first.vrt')
This first.vrt file can be opened in OpenEV. You should see a gray scale image of

the Wasatch Range centered roughly on the Alta ski area at the head of Little
Cottonwood Canyon.

Further VRT Element Hacking
A handy feature is that our elements are entirely mutable. Set the source band to
“2” and write to a new file

>>> sband elem.text = '2'

>>> vrttree.write ('second.vrt')

repeat for the third band
>>> sband elem.text = '3'
>>> vrttree.write('third.vrt')
Raster hackers might find this a good way to tweak pixel scaling, color tables, or

even filter kernels. See http://www.gdal.org/gdal vrttut.html for more VRT
options.

Complete VRT Script

Finally, we return to the objective: a VRT that aggregates source rasters of a
single class (same band count, same projection, and pixel resolution). It's not
much more involved than our previous example. The VRT raster size and extents
are expanded as each input raster is read, and the individual raster data is
mapped into the aggregate output by calculating the appropriate destination
rectangle.

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 11
Raster Data Aggregation 6/16/2005

The completed script is at c:/ms4w/apps/python/aggregation/aggvrt.py and can
be run using the accompanying aggregation.bat file. Aim it at the 5 workshop
raster files matching the pattern c:/ms4w/apps/python/python/data/*30* tif,
redirect the output to a .vrt file and check the results again in OpenEV. You
should see results like this

(2] DpenEY: View 1 -|0O] x|
File Edit Image Filter‘ Tools Help

& nplnalEoalale dalalr| 6

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 1
Remote DEM and DOQ 6/16/2005

Get DEM, DOQ), and SRTM data for any area of interest in
the coterminous US

You need digital elevation data and ortho imagery for any area of interest in
the coterminous US.

One approach might be the “Google” approach, ie download all of the US NED
and USGS DOQ data for the entire US, process it, and then store it. The
approach has some disadvantages, however. First, USGS updates both the NED
and DOQ data at different intervals for different parts of the country. If you
were to pre-process everything, you would only have a single “snapshot” that
was only valid for a single point it time - you want the latest and greatest data.
Second, the storage requirements for this approach are humungous. The cost of
maintaining all three datasets would be very high, and you would still have the
problem of refreshing the data.

Another, more timely approach, would be to automate the process of getting
each on demand, depend on the infrastructure that already manages them, and
use the data in whichever application needs it.

This hack will utilize three methods to request, acquire, and transfer the data.
The DEM will be “scraped” off of the USGS site, the DOQ will be requested
through TerraServer’s SOAP API, and the SRTM data will come from a
MapServer-based WCS (Web Coverage Service) source.

What you need:

* Python (obviously)

GDAL (for projecting the DEM, and creating the output data)
pyTerra (for requesting the DOQ from TerraServer)

OpenEV (to view your output)

Some strategerizing

All three of our data types - DEM, DOQ, and SRTM - need to be saved out to
Imagine (HFA) format in the same coordinate system as the extent that we’ll

specify. Even though we’re hacking, a little object-orient design could save us
some time. One thing to notice is that each of the data types is given the same

starting point - an extent, and each has the same end point - saved to an Imagine
tile.

The part that is different for each of the three data types is how the data are
actually gotten. If we create a class that can be subclassed for each of the three
types, we only have to implement the part that gets the data in each.

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 2

Remote DEM and DOQ 6/16/2005
Remote

Bemote - g extent
init__()
llﬁlll — pr—— '

BVAV get()
H,f‘f \“x\ save()
e e
e e
ey
/’f e
‘ DEM ‘ ‘ DOQ ‘ ‘ SRTM ‘

Figure 1. The Remote class implements the three methods - __init_, get, and
save - that each of the three data types need. We will subclass Remote for all
three and provide our own implementation of get() for each.

A smart extent object

To start, we need something that is a “smart” extent that knows how to project
itself. We will use a class to do this, and the class will take in minx, miny, maxx,
and maxy parameters on instantiation as well as an optional EPSG code telling
us which coordinate system the extent is in (defaulting to 4326). The Extent
object will provide a transform() method that can transform the extent into any
other coordinate system.

To make things a bit easier, we will make a class called SmartExtent that will
store both the forward and inverse extents to make it easy to get both the
projected and unprojected coordinates.

Extent SmartExtent
minx
miny forward inverse
maxx minx minx
maxy miny miny
tranform() maxx maxx
maxy maxy
tranform() tranformiy)

Figure 2. Extent and SmartExtent objects. The SmartExtent object just acts
as a container and takes care of calling the transform() method for us.

Howard Butler and Sean Gilles
©Howard Butler

Open Source Geospatial '05
June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Remote DEM and DOQ 6/16/2005

1 class Extent (object) :

2 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :

3 self.epsgcode = epsgcode

4 self.minx = minx

5 self.maxx = maxx

6 self.miny = miny

i self.maxy = maxy

8 def transform(self, target epsg code):

9 mins = ogr.Geometry (type=ogr.wkbPoint)

10 maxs = mins.Clone ()

11

12 mins.AddPoint (self.minx, self.miny)

13 maxs.AddPoint (self.maxx, self.maxy)

14 ref = osr.SpatialReference ()

15 ref.ImportFromEPSG (self.epsgcode)

16 maxs.AssignSpatialReference (ref)

17 mins.AssignSpatialReference (ref)

18 out ref = osr.SpatialReference ()

19 out ref.ImportFromEPSG (target epsg code)

20 £t mins = mins.Clone ()

21 t mins.TransformTo (out ref)

22 t maxs = maxs.Clone ()

23 t maxs.TransformTo (out ref)

24 ext = Extent (t mins.GetX (), t mins.GetY(),

25 t maxs.GetX (), t maxs.GetY(),

26 epsgcode = target epsg code)

27 return ext
We'll use the SmartExtent object to act as a container for our transformed extents.

28 class SmartExtent (object) :

29 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :

30 self.epsgcode = epsgcode

31 self.forward = Extent (minx, miny, maxx, maxy, epsgcode)

32 self.inverse = self.forward.transform(4326)
Next, the instance needs to know how return the transformed (in 4326)
coordinates whenever we try to get the string representation of it (this way we
can easily substitute it into the URL for the area-of-interest query).

33 def str (self):

34 outstring = "%s,%s,%s,%s"

35 return outstring % (self.inverse.maxy, self.inverse.miny,

36 self.inverse.maxx, self.inverse.minx)
Some test code

37 minx = 437142.35

38 miny = 4658582.96

39 maxx = 436521.25

40 maxy = 4659253.80

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Remote DEM and DOQ 6/16/2005

541 extent = SmartExtent (minx, miny, maxx, maxy, epsgcode=26915)

542 print extent

543 >> 42.0827943476,42.0768029037,-93.7674817555,-93.759900979
Now that we have a smart extent, we can input a bounding box in whatever
projection system we need. The advantages of doing it this way instead of just
using a simple lat/lon box are twofold. First, if we need to, we can reuse this
extent and add more smarts to it when we need to (and will for downloading the
TerraServer imagery). Second, providing the convenience of an auto-projecting
extent protects our little application from changes in requirements up the line.
That way, when your boss asks, “Can I feed this a Lambert Conformal Conic
extent instead?”, you'll be ready for it.
The super class’s save() method
While each subclass implements its own get() method, the Remote class will be the
one implementing the save() method so that each of the three data types will
behave similarly. It also defines the __init_ () method that takes in one of our
extents.
One thing to note here is that the save() method takes care to get the projection
information from the native-format files that the get() method returns. It also
makes sure that the raster is projected into the coordinate system that was given
in the extent.

44 class Remote (object) :

45 def init (self, extent):

46 self.extent = extent

477

48 def get(self):

49 pass

50

51 def save (self, filename) :

52

53 infile = self.get()

54

55 o = gdal.OpenShared(infile)

56 dst driver = gdal.GetDriverByName ('HFA'")

57 outref = osr.SpatialReference ()

58 outref.ImportFromEPSG (self.extent.epsgcode)

59 dst wkt = outref.ExportToWkt ()

60 inref = osr.SpatialReference ()

61

62 can_import = inref.ImportFromWkt (o.GetProjection())

63 if can import != O:

04 inref.ImportFromEPSG (4326)

65 src_wkt = inref.ExportToWkt ()

66

67

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Remote DEM and DOQ 6/16/2005
568 gdal.CreateAndReprojectImage (o,
69 filename,
.70 src_wkt = src wkt,
71 dst driver=dst driver,
72 dst_wkt=dst wkt)
Getting the DOQ
The work of getting the DOQ from TerraServer has already been done for us.
The pyTerra (http:/ /hobu.biz/software/pyTerra/) library has a class called
Terralmage that does all of the work that we implemented in the get() method of
RemoteDEM. All we need to do is to create a get() method that does the work of
downloading the TerraServer image, setting the coordinate system to the
coordinate system (UTM zone) that TerraServer gave us, and return the filename
back to the instance so that the save() method can pick it up and reproject it into
the our coordinate system of choice.
There is one complication, however. The Terralmage class of pyTerra requires
that the UTM zone also be given with the request. Because we made the “smart”
extent, providing this won’t be too hard. The smart extent already contains the
information we need (the longitude) to calculate a UTM zone in its t_mins and
t_maxs attributes. We can use these attributes and a lookup dictionary to find
the UTM zone of the extent. If the extent crosses two UTM zones, nothing is
returned (TerraServer can’t process requests across UTM zones in a single pass
anyway).
73 class SmartExtent (object) :
4 .
75 def get zone (self):
76 zones = {10:[-126,-120],
77 11:[-120,-1147,
78 12:[-114,-108],
79 132 [=108,=1021 ,
80 14:[- 102 =961 ,
81 152 [[= =907 ,
82 16sg [[= 90 -84],
83 17:[-84,-78],
84 18 [=78,=T21,
85 192 [=72,=661],
86 20:[-66,-60]
87 }
88
89 minx = self.inverse.minx
90 maxx = self.inverse.maxx
91 for 1 in zones:
92 #build the epsg code
93 min,max = map(float, zones[i])
94 if minx > min and minx < max:
95 min utmzone = 26900+1
96 if maxx > min and maxx < max:
97 max utmzone = 26900+1
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6

Minneapolis, MN

Remote DEM and DOQ 6/16/2005
598 if min utmzone == max utmzone:
99 return min_ utmzone
100 else:
2101 return None
In our get() method, we set all of the information needed for the Terralmage
instance and save the JPEG and worldfile into the temporary directory, open it
with GDAL, convert it to a GeoTIFF, and add the coordinate reference. The
save() method will then pick this up when reprojecting the DOQ into the
coordinate system that we defined in our extent.
102 class DOQ (Remote) :
103
104 def get (self):
105 thescale = 'Scalelm' # scale of the DOQ from TS
106 thetype = 'Photo'# Photo or Topo
107
108 # a Terralmage must know its zone
109 thezone = self.extent.get zone() - 26900
110 upperleft = Terralmage.point (self.extent.inverse.maxy,
111 self.extent.inverse.minx)
112 lowerRight = Terralmage.point (self.extent.inverse.miny,
113 self.extent.inverse.maxx)
114
115 ti = Terralmage.Terralmage (upperleft,
116 lowerRight,
117 thescale,
118 thetype,
119 thezone)
120 self.ti = ti
121 temp filename = os.path.join(temp dir, get timestamp()) + '.Jjpg'
122 self.ti.write(temp filename)
123 self.ti.write worldfile(temp filename+"w")
124
125 ds = gdal.Open (temp filename)
126 drv = gdal.GetDriverByName ('GTiff"')
127 tiff filename = temp filename.replace('.jpg','.tiff")
128 tiff ds = drv.CreateCopy (tiff filename, ds)
129 ref = osr.SpatialReference ()
130 ref.ImportFromEPSG (self.extent.epsgcode)
131 tiff ds.SetProjection(ref.ExportToWkt ())
132
133 return tiff filename
The usage of this class is a simple, two-line call:
134 dog = DOQ (extent)
135 dog.save (r'C:\temp\dog.img"')
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Open Source Python GIS Hacks Page: 7
Remote DEM and DOQ 6/16/2005

Getting the SRTM data

As of MapServer 4.4, support for WCS (Web Coverage Service) is available.
Whereas WMS provides a rendered map image, WCS allows a requestor to
obtain the actual raw raster data through a structured URL request. Frank
Warmerdam provides the SRTM (Shuttle Radar Topography Mission) through a
WCS service at http://maps.gdal.org . Here is an example of the “Capabilities”
request that you can use to find out more information about a WCS server - in
our case Frank’s.

5136 http://maps.gdal.org/cgi-
5 bin/mapserv_dem?&version=1.0.0&service=WCS&request=GetCapabilities

Hitting this URL in our web browser, we can see that there is one layer, called
srtmplus_raw, which appears to have what we want.

Next, we'll use a DescribeCoverage method to find out more information about the
layer.

5137 http://maps.gdal.org/cgi-
5 bin/mapserv_dem?&version=1.0.0&service=WCS&request=DescribeCoverage&layer=s
rtmplus raw 5

The XML listing of this request shows us that that the layer is provided in the
EPSG:4326 and EPSG:4269 coordinate systems, has an output format of
GEOTIFF_INT16, and has a resolution of 0.00833333 degrees per pixel.

With this information in hand, we have enough information to build a Python
class to do the work of downloading the image for us. We’ve already done most
of the work, however. The RemoteDEM class already defines a way to take in an
extent, and turn a temporary GDAL DataSet into a projected Imagine file.

All our RemoteSRTM class needs to define is the _save_tempfile() method. This
method needs to formulate the request, download it, and save it to a temporary

file.

138 class RemoteSRTM (RemoteDEM) :

139 def get(self):

140 url = 'http://maps.gdal.org/cgi-
bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus raw&version=1.0.0&service=
WCS&request=GetCoverages&bbox=%s&width=100&height=100&format=GEOTIFF INT16'

141

142 extent string = '$s,%s,%s,%s' % (self.extent.t mins.GetX(),

143 self.extent.t mins.GetY(),

144 self.extent.t maxs.GetX(),

145 self.extent.t maxs.GetY ()

146)

147 url = url % extent string

148 response = urllib2.urlopen (url)

149

150 astring = response.read/()

151

152 temp filename = os.path.join(temp dir, get timestamp()) + '.tiff'

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 8

Remote DEM and DOQ 6/16/2005
153 fo = open(temp filename, 'wb')
154 fo.write (astring)
155 fo.close ()
156 return temp filename

USGS NED DEM

USGS provides one product of digital elevation models called the NED (National
Elevation Dataset) on their website at http://seamless.usgs.gov. The user
interface for requesting DEMs is pretty clunky, but it amounts to manually
defining an area of interest, choosing the “Download” link, waiting in a queue,
and then saving the zip file of the DEM on your local machine.

Python provides excellent capabilities for working with URLs in the standard
libraries urllib and urllib2. We can use urllib2 and cookielib (another standard
library as of Python 2.4) to simulate the user requesting an area of interest,
waiting in the queue, and saving the resulting zip file on the local file system.

We need to make a series of requests to the USGS site to simulate a user doing
the same thing. The first request asks the USGS for a session, tells the site which
area of interest we want, and returns us the session cookie that we will use for
subsequent requests. The second request actually puts us in the queue. The final
series of requests asks the website if our data is ready every 10 seconds, and
when it is, downloads the data to our local machine.

Y Y
Start
Fut ourselves
- - Download zip file

in the gueue

Extent Object i

l

Request DEM

[

Is our
response a
zip file?

Yes

Figure 3. A process diagram of requesting a DEM from the USGS site.

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 9
Remote DEM and DOQ 6/16/2005

Download and save the DEM

Now we need to make a class that will model the behavior of our remote DEM
from the USGS site. Looking at Figure 3, we can see that we will want to feed
this class one of our custom extent objects. Once returned, the DEM will be a
binary Arc/Info coverage that is stored in a zip file. We will then need some
methods to both get the DEM and save it to a temp directory that we can then
use to create our shaded DOQ.

The __init__ method of our DEM (subclassed from Remote) class will take in our
custom extent. All of the specific implementation exists in the get() method, and
it does all of the work of actually getting the DEM from the USGS site.

Create temp Open the Arc/Info
Download zip file - directary in ™| coverage as a
STEMP GDALDataset

FProject the Arc/
Info coverage and
| save
Y Y

Save zip file in a Extract Arc/info Grab the H'_.A

Ly — driver and defing

cStringlO coverage

coordinate refs

Figure 4. get() method of DEM (continued).

157 class DEM (Remote) :

158 def get(self):

159 self.add to queue ()

160 self.download/()

161 temp file = self.write temp file()
162 return temp file

The get() method of DEM is really just a driver function. The main pieces of
requesting, downloading, and saving a DEM from the USGS site are
implemented separately to make things a bit easier to read, break up the code,
and allow us to make localized changes if the USGS changes their site (which
they did at least once while I was writing this exercise).

The add_to_queue() method makes the initial request to the USGS site and gives it
our extent, gets a cookie (done automatically by cookielib), and returns our place
in the queue.

163 def add to queue (self) :

164
165 url =
'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NEDO1HZ' 5
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 10

Remote DEM and DOQ 6/16/2005
166 url = url % (self.extent)
167
168 req = urllib2.Request (url)
169 handle = urllib2.urlopen (req)
170
171 url =
'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus n
ed&msd=NED.CONUS_NED_METADATA&Zun=METERS&prj=O&csx=2.777777777999431E—
4&csy=2.777777777999431E-4&bnd=&bndnm="
172
173 url = url % (self.extent.inverse.minx,
174 self.extent.inverse.maxx,
175 self.extent.inverse.maxy,
176 self.extent.inverse.miny)
177
178 reg2 = urllib2.Request (url)
179 handle = urllib2.urlopen (reg2)
180 self.handle = handle
Now that we’re in the queue, we need a method to actually wait in the queue,
make a request to the website to ask if it is done with our DEM every 10 seconds,
and download the zip file with our data. The download() method does this.
Instead of saving the data to a file, however, we will be storing it in a cStringlO
instance. You can think of this as a string buffer. By storing it here, it will be in
memory with our instance. We are using this because we want our
write_temp_file() method to actually extract the stuff out of the zip file and return
its location to the caller so that the save() method can do what it needs.
181 def download(self):
182 if debug:
183 print 'requesting DEM download...'
184
185 # ask forever until the website returns
186 # application/x-zip-compressed as the content type
187 # I've had this go for over an hour sometimes.
188 wait, newurl = self.handle.info () ['refresh'].split(';")
189 newurl = newurl.replace('URL="',"'"').strip()
190 url2 = 'http://extract.cr.usgs.gov%s'S%newurl
191 while 1:
192
193 time.sleep (int (wait))
194 request = urllib2.Request (url?2)
195 response = urllib2.urlopen (request)
196
197 if 'text/html' not in response.info () ['content-type']:
198 if debug:
199 print "it's our turn... downloading DEM..."
200 output = response.read()
201 break
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 11

Remote DEM and DOQ 6/16/2005

202 else:

203 if debug:

204 print 'still in the queue. requesting again... '

205

206 zip output = cStringIO.StringIO ()

207 zip output.write (output)

208 self.zip output = zip output
Python comes with the module zipfile as a standard library, and we’ll now use
that help us implement the write_temp_file() method. This method does all of the
mundane business of extracting the Arc/Info coverage out to a temporary file
and returning the location of the file to the caller.

209 def write temp file(self):

210 # reset the cStringIO to read at the beginning

211 self.zip output.reset ()

212

213 # make a temp directory in STEMP

214 temp filename = get timestamp ()

215 outdir = os.path.join(temp dir, temp filename)

216 os.mkdir (outdir)

217

218 # the arcinfo files use the *opposite* path separator than

219 # than the system's.

220 if os.sep == '"\\':

221 info separator = '/'

222 else:

223 info separator = '\\'

224

225 # extract the info coverage into the temp directory

226 z = zipfile.ZipFile(self.zip output)

227 arcinfo dir = z.filelist[0].filename.split(info separator) [0]

228 tempdir = os.path.join(outdir, arcinfo dir)

229 os.mkdir (tempdir)

230 tempdir = os.path.join(outdir, arcinfo dir, arcinfo dir)

231 os.mkdir (tempdir)

232 tempdir = os.path.join (outdir, arcinfo dir, 'info')

233 os.mkdir (tempdir)

234

235 for name in z.namelist () :

236 outfile = open(os.path.join (outdir, name), 'wb')

237 outfile.write (z.read (name))

238 outfile.flush ()

239 outfile.close()

240

241 # USGS's zipfile buries the data in another arcinfo directory

242 # so we have to use two

243 infile = os.path.join(outdir,arcinfo dir,arcinfo dir)

244 return infile

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks
Remote DEM and DOQ

Page: 12
6/16,/2005

Finally, here’s how we use the DEM class...

245
246
247
248
249
250
251
252
253
254
255
256

maxx = 437142.35

miny = 4658582.96

minx = 436521.25

maxy = 4659253.80

extent = Extent (minx, miny, maxx, maxy, epsgcode=26915)
print extent

dem = DEM(extent)

dem.save (r'c:\temp\dem.img')
42.0828443199,42.076752942,-93.7599730671,-93.7674089552
requesting DEM download...

still in the queue. requesting again...

it's our turn... downloading DEM.. .

Howard Butler and Sean Gilles Open Source Geospatial '05

©Howard Butler

June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 13
Remote DEM and DOQ 6/16/2005

Code Listing

1 import gdal.ogr as ogr

2 import gdal.osr as osr

3 import gdal.gdal as gdal

4

5 import cookielib

6 import urllib2

i import cStringIO

8 import zipfile

9

10

11 from pyTS import Terralmage

12 from pyTS import pyTerra

13

14 import os

15 import sys

16 import time

17

18 debug =1

19 cookiejar = cookielib.LWPCookieJar ()

20 opener = urllib2.build opener (urllib2.HTTPCookieProcessor (cookiejar))

21 urllib2.install opener (opener)

22

23 temp dir= os.environ['TEMP']

24

25 def get timestamp():

26 """returns a big, unique, string that we can use for nonsensical
filenames"""

277 import mdb5

28 g = md5.md5 (str(time.time()))

29 return g.hexdigest ()

30

31 class Extent (object) :

32 """An extent that can transform itself into other coordinate systems"""

33 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :

34 """MapServer-style... minx, miny, maxx, maxy, with an optional
epsgcode

35 defaults to EPSG:4326"""

36 self.epsgcode = epsgcode

37 self.minx = minx

38 self.maxx = maxx

39 self.miny = miny

40 self.maxy = maxy

41 def transform(self, target epsg code):

42 """Transforms the extent into the target EPSG code and returns
ig.mmn

43 mins = ogr.Geometry (type=ogr.wkbPoint)

44 maxs = mins.Clone ()

45

46 mins.AddPoint (self.minx, self.miny)

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 14

Remote DEM and DOQ 6/16/2005
477 maxs.AddPoint (self.maxx, self.maxy)
48 ref = osr.SpatialReference ()
49 ref.ImportFromEPSG (self.epsgcode)
50 maxs.AssignSpatialReference (ref)
51 mins.AssignSpatialReference (ref)
52 out ref = osr.SpatialReference ()
53 out ref.ImportFromEPSG (target epsg code)
54 £t mins = mins.Clone ()
55 t mins.TransformTo (out ref)
56 t maxs = maxs.Clone ()
57 t maxs.TransformTo (out ref)
58 ext = Extent (t mins.GetX (), t mins.GetY(),
59 t maxs.GetX (), t maxs.GetY(),
60 epsgcode = target epsg code)
61 return ext
62
63
64
65 class SmartExtent (object) :
66 """A class that acts as a container for our extents by storing the
67 forward and inverse projections.”"""
68 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :
69 """MapServer-style... minx, miny, maxx, maxy, with an optional
epsgcode
70 defaults to EPSG:4326"""
71 self.epsgcode = epsgcode
72 self.forward = Extent (minx, miny, maxx, maxy, epsgcode)
73 self.inverse = self.forward.transform(4326)
74
75 def str (self):
76 """Prints out the inverse extent in the form that the USGS site
needs."""
77 outstring = "%s,%s,%s,%s"
78 return outstring % (self.inverse.maxy, self.inverse.miny,
79 self.inverse.maxx, self.inverse.minx)
80
81 def get zone (self):
82 """Returns the UTM zone of the extent."""
83 zones = {10:[-126,-120],
84 11:[-120,-114],
85 12:[-114,-108],
86 13:[-108,-102],
87 14:[- 102 =961 ,
88 155 [=96,=90],
89 16:[-90,-84],
90 17:[-84,-781,
91 18:[-78,-721,
92 19:[-72,-66],
93 20:[-66,-60]
94 }
95
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 15

Remote DEM and DOQ 6/16/2005
96 minx = self.inverse.minx
97 maxx = self.inverse.maxx
98 for 1 in zones:
99 #build the epsg code
100 min,max = map(float, zones[i])
101 if minx > min and minx < max:
102 min utmzone = 26900+1
103 if maxx > min and maxx < max:
104 max utmzone = 26900+1
105 if min utmzone == max utmzone:
106 return min utmzone
107 else:
108 return None
109
110
111 class Remote (object) :
112 """A super class that defines the input for the three data types."""
113 def 1init (self, extent):
114 """Take in one of our SmartExtent objects.”"""
115 self.extent = extent
116
117 def get (self):
118 """Dummy method. Should not be called directly."""
119 pass
120
121 def save (self, filename) :
122 """Saves the given filename in the coordinate system that
123 was given by the SmartExtent.”"""
124 infile = self.get ()
125
126 o = gdal.OpenShared(infile)
127 dst driver = gdal.GetDriverByName ('HFA'")
128 outref = osr.SpatialReference ()
129 outref.ImportFromEPSG (self.extent.epsgcode)
130 dst wkt = outref.ExportToWkt ()
131 inref = osr.SpatialReference ()
132
133 can_import = inref.ImportFromWkt (o.GetProjection())
134 if can import != O:
135 inref.ImportFromEPSG (4326)
136 src_wkt = inref.ExportToWkt ()
137
138 gdal.CreateAndReprojectImage (o,
139 filename,
140 src_wkt = src wkt,
141 dst driver=dst driver,
142 dst wkt=dst wkt)
143
144 class DEM(Remote) :
145 """A class to get DEMs from the USGS Seamless site at
146 http://seamless.usgs.gov"""
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 16
Remote DEM and DOQ 6/16/2005

147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

def get (self):
"""Returns the downloaded file for the save () method"""
self.add to queue /()
self.download ()
temp file = self.write temp file()
return temp file

def add to queue (self):
"""Adds our request for a DEM to the USGS queue."""
url =
'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NEDO1HZ'
url = url % (self.extent)

req = urllib2.Request (url)
handle = urllib2.urlopen (req)

url =
'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1l&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus n
ed&émsd=NED.CONUS NED METADATA&zun=METERS&prj=0&csx=2.777777777999431E-
4&csy=2.777777777999431E-4&bnd=&bndnm="
url = url % (self.extent.inverse.minx,
self.extent.inverse.maxx,
self.extent.inverse.maxy,
self.extent.inverse.miny)

reg2 = urllib2.Request (url)
handle = urllib2.urlopen (reg2)
self.handle = handle

def download(self) :
"""Waits in the USGS queue and downloads the DEM in
Arc/Info format when it is our turn."""
if debug:
print 'requesting DEM download...'

ask forever until the website returns
application/x-zip-compressed as the content type
I've had this go for over an hour sometimes.

wait, newurl = self.handle.info () ['refresh'].split(';")
newurl = newurl.replace('URL="',"'"').strip()

url2 = 'http://extract.cr.usgs.gov%s'S%newurl

while 1:

time.sleep (int (wait))
request = urllib2.Request (url?2)
response = urllib2.urlopen (request)

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 17

Remote DEM and DOQ 6/16/2005

191 if '"text/html' not in response.info () ['content-type']:

192 if debug:

193 print "it's our turn... downloading DEM..."

194 output = response.read()

195 break

196 else:

197 if debug:

198 print 'still in the queue. requesting again... '

199

200 zip output = cStringIO.StringIO ()

201 zip output.write (output)

202 self.zip output = zip output

203

204 def write temp file(self):

205 """Writes out the file given by the download() method

206 in a temporary directory and returns the location to the

207 caller."""

208 # reset the cStringIO to read at the beginning

209 self.zip output.reset ()

210

211 # make a temp directory in STEMP

212 temp filename = get timestamp ()

213 outdir = os.path.join(temp dir, temp filename)

214 os.mkdir (outdir)

215

216 # the arcinfo files use the *opposite* path separator than

217 # than the system's.

218 if os.sep == '"\\':

219 info separator = '/'

220 else:

221 info separator = '\\'

222

223 # extract the info coverage into the temp directory

224 z = zipfile.ZipFile(self.zip output)

225 arcinfo dir = z.filelist[0].filename.split(info separator) [0]

226 tempdir = os.path.join(outdir, arcinfo dir)

2277 os.mkdir (tempdir)

228 tempdir = os.path.join(outdir, arcinfo dir, arcinfo dir)

229 os.mkdir (tempdir)

230 tempdir = os.path.join(outdir, arcinfo dir, 'info')

231 os.mkdir (tempdir)

232

233 for name in z.namelist () :

234 outfile = open(os.path.join (outdir, name), 'wb')

235 outfile.write (z.read (name))

236 outfile.flush ()

237 outfile.close()

238

239 # USGS's zipfile buries the data in another arcinfo directory

240 # so we have to use two

241 infile = os.path.join(outdir,arcinfo dir,arcinfo dir)
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 18

Remote DEM and DOQ 6/16/2005

242 return infile

243

244

245

246

247 class DOQ (Remote) :

248 """A class that implements getting a DOQ from the Microsoft

249 TerraServer."""

250 def get(self):

251 """Returns the downloaded file for the save () method"""

252 thescale = 'Scalelm' # scale of the DOQ from TS

253 thetype = 'Photo'# Photo or Topo

254

255 # a Terralmage must know its zone

256 thezone = self.extent.get zone() - 26900

257 upperleft = Terralmage.point (self.extent.inverse.maxy,

258 self.extent.inverse.minx)

259 lowerRight = TerralImage.point (self.extent.inverse.miny,

260 self.extent.inverse.maxx)

261

262 ti = Terralmage.Terralmage (upperleft,

263 lowerRight,

264 thescale,

265 thetype,

266 thezone)

267 self.ti = ti

268 temp filename = os.path.join(temp dir, get timestamp()) + '.Jjpg'

269 self.ti.write(temp filename)

270 self.ti.write worldfile(temp filename+"w")

271

272 ds = gdal.Open (temp filename)

273 drv = gdal.GetDriverByName ('GTiff"')

274 tiff filename = temp filename.replace('.jpg','.tiff")

275 tiff ds = drv.CreateCopy (tiff filename, ds)

276 ref = osr.SpatialReference ()

277 ref.ImportFromEPSG (self.extent.epsgcode)

278 tiff ds.SetProjection(ref.ExportToWkt ())

279

280 return tiff filename

281

282 class SRTM (Remote) :

283 """A class that implements getting the SRTM data from the

284 WCS server at http://maps.gdal.org"""

285 def get(self):

286 """Returns the downloaded file for the save () method"""

287 url = 'http://maps.gdal.org/cgi-
bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus raw&version=1.0.0&service=
WCS&request=GetCoverage&bbox=%s&width=100&height=100&format=GEOTIFF INT16'

288

289 extent string = '$s,%s,%s,%s' % (self.extent.inverse.minx,

290 self.extent.inverse.miny,

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 19

Remote DEM and DOQ 6/16/2005
291 self.extent.inverse.maxx,
292 self.extent.inverse.maxy
293)
294 url = url % extent string
295 response = urllib2.urlopen (url)
296
297 astring = response.read()
298
299 temp filename = os.path.join(temp dir, get timestamp()) + '.tiff'
300 fo = open(temp filename, 'wb')
301 fo.write (astring)
302 fo.close ()
303 return temp filename
304

305 maxx = 437142.35

306 miny = 4658582.96

307 minx = 436521.25

308 maxy = 4659253.80

309 extent = SmartExtent (minx, miny, maxx, maxy, epsgcode=26915)
310 print extent

311 dem = DEM(extent)

312 dem.save (r'c:\temp\usgs.img')
313 dog = DOQ (extent)

314 dog.save (r'C:\temp\dog.img"')
315 srtm = SRTM (extent)

316 srtm.save(r'c:\temp\srtm.img')

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 1
Exploring Web Feature Services 6/16/2005

Exploring Web Feature Services

No fancy client needed, open standards and XML make it easy to explore WFS
using Python.

Capabilities
We'll test against my two-bit WFS instance at

http://zcologia.com:9001/mapserver/members/

which has members of the next generation MapServer site as its sole feature type,
and if port 9001 is forbidden in the UMN computer lab, we'll try

http://www.refractions.net:8080/geoserver/wfs/GetCapabilities

or another service from the catalog at

http://www.refractions.net/white_papers/ogcsurvey/index.php

Connecting
Start up the Python interpreter and define a GetCapabilities request URL:

>>> base =
'http://zcologia.com:9001/mapserver/members/capabilities.r

py'

>>> request = base +
'?service=WFS&request=GetCapabilities'

We'll use ur11ib to get a file on this URL and parse the file with an
ElementTree

>>> import urllib

>>> u = urllib.urlopen (request)

>>> from elementtree.ElementTree import ElementTree
>>> tree = ElementTree ()

>>> root = tree.parse (u)

This method returns the root Element of t ree. Next print root
>>> print root

<Element {http://www.opengis.net/wfs}WFS Capabilities at
99ed78>

>>>
the string representation of an Element includes the qualified name of the
Howard Butler and Sean Gillies Open Source Geospatial '05

©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Exploring Web Feature Services 6/16/2005

element in the form {uriflocal. In an XML file, we usually define a prefix for each
URI, and write the element out like '<prefix:local />'.

Service Elements

Elements are list-like, so we have a simple Python-ic way to inspect the children
of any element

>>> list (root)

[<Element {http://www.opengis.net/wfs}Service at 97a580>,
<Element {http://www.opengis.net/wfs}Capability at
99e878>, <Element {http://www.opengis.net/wfs}
FeatureTypelList at 9ab5148>, <Element
{http://www.opengis.net/wfs}Filter Capabilities at
9a53a0>]

Let's pick out the Service, or more accurately, the {http://www.opengis.net/wfs}
Service element and print its children

>>> service = root[0]

>>> for e in service:

(o)

s' % (e.tag, e.text)

o\

print '%s =>

{http://www.opengis.net/wfs}Title => MapServer Site Member
Locations

{http://www.opengis.net/wfs}Name => members

{http://www.opengis.net/wfs}OnlineResource =>
http://zcologia.com: 9001 /mapserver/members

{http://www.opengis.net/wfs}Abstract => Demonstrating a

lightweight and low budget WFS server using ElementTree

and Twisted. Every 5 minutes we use RPC to mine the next
generation MapServer website for member locations. These
locations are rendered into GML for a WFS response.

{http://www.opengis.net/wfs}AccessConstraints => NONE
{http://www.opengis.net/wfs}Fees => NONE

{http://www.opengis.net/wfs}Keywords => WFS, ELEMENTTREE,
TWISTED, PYTHON

>>>

FeatureType Elements

The question we ask now is whether this service can give us any point type
features. The first step towards the answer is to poke around our root's

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Exploring Web Feature Services 6/16/2005
FeatureTypeList element. This is at index 2.

>>> ftypes = root[2].getiterator
('{http://www.opengis.net/wfs}FeatureType')

>>> ftypes

[<Element {http://www.opengis.net/wfs}FeatureType at
9a5a80>]

>>> list (ftypes[0])

[<Element {http://www.opengis.net/wfs}Name at 9a59%e0>,
<Element {http://www.opengis.net/wfs}SRS at 9a5ad0>,
<Element {http://www.opengis.net/wfs}LatLongBoundingBox at
9a5af8>]

>>> for e in ftypes|[0]:

(o)

print '$s => %$s' % (e.tag, e.text)

{http://www.opengis.net/wfs}Name => member
{http://www.opengis.net/wfs}SRS => EPSG:4326
{http://www.opengis.net/wfs}LatLongBoundingBox => None

>>>

Capability Elements

So, we have a feature type named 'member’ ... does it have a point property? To
answer this, we'll need to make a GetFeatureType request. The base URL for
such a request is found by inspecting the root's Capability element:

>>> capability = root[1]

>>> list (capability)

[<Element {http://www.opengis.net/wfs}Request at 99ed00>]

>>> request = capability[0]

>>> list (request)

[<Element {http://www.opengis.net/wfs}GetCapabilities at
99eaf8>, <Element {http://www.opengis.net/wfs}
DescribeFeatureType at 9a52d8>, <Element
{http://www.opengis.net/wfs}GetFeature at 9a5580>]

>>> iter = request.getiterator
("{http://www.opengis.net/wfs}Get")

>>> for e in iter:

print '$s => %$s' % (e.tag, e.items())

Howard Butler and Sean Gillies Open Source Geospatial '05

©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Exploring Web Feature Services 6/16/2005

{http://www.opengis.net/wfs}Get => [('onlineResource',
'http://zcologia.com:9001/mapserver/members/capabilities.r

py')]

{http://www.opengis.net/wfs}Get => [('onlineResource',
'http://zcologia.com:9001/mapserver/members/description.rp

v')]
{http://www.opengis.net/wfs}Get => [('onlineResource',
'http://zcologia.com:9001/mapserver/members/features.rpy"')

]

The second of these elements is the one we are after.

DescribeFeatureType

Now we make a DescribeFeatureType request and parse the response.
>>> description base = iter[l].get('onlineResource')

>>> url = description base +
'?service=WFS&request=DescribeFeatureType&typename=member"'

>>> u = urllib.urlopen (url)
>>> dtree = ElementTree ()
>>> droot = dtree.parse (u)
>>> list (droot)

[<Element {http://www.w3.0rg/2001/XMLSchema}import at

a3df30>, <Element {http://www.w3.org/2001/XMLSchema }

element at a3df58>, <Element

{http://www.w3.0rg/2001/XMLSchema}complexType at a3ded0>]
Making sense of the schema is a bit beyond the scope of this humble hacking
workshop. We'll just print the attributes of the schema elements and look for
location, position, or pointProperty types and refs:

>>> elems = droot.getiterator
('{http://www.w3.0rg/2001/XMLSchema}element')

>>> for e 1n elems:

print e.items ()

[("substitutionGroup', 'gml: Feature'), ('type',

'member Type'), ('name', 'member')]

[('type', 'string'), ('name', 'fid')]

[("type', 'string'), ('name', 'mid')]

[('type', 'string'), ('name', 'fullname')]
Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5
Exploring Web Feature Services 6/16/2005

[('ref', 'gml:location')]

>>>

gml:location ... we have a point property.

Howard Butler and Sean Gillies Open Source Geospatial '05
©Sean Gillies June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 1
Remote DEM and DOQ 6/16/2005

Get DEM, DOQ), and SRTM data for any area of interest in
the coterminous US

You need digital elevation data and ortho imagery for any area of interest in
the coterminous US.

One approach might be the “Google” approach, ie download all of the US NED
and USGS DOQ data for the entire US, process it, and then store it. The
approach has some disadvantages, however. First, USGS updates both the NED
and DOQ data at different intervals for different parts of the country. If you
were to pre-process everything, you would only have a single “snapshot” that
was only valid for a single point it time - you want the latest and greatest data.
Second, the storage requirements for this approach are humungous. The cost of
maintaining all three datasets would be very high, and you would still have the
problem of refreshing the data.

Another, more timely approach, would be to automate the process of getting
each on demand, depend on the infrastructure that already manages them, and
use the data in whichever application needs it.

This hack will utilize three methods to request, acquire, and transfer the data.
The DEM will be “scraped” off of the USGS site, the DOQ will be requested
through TerraServer’s SOAP API, and the SRTM data will come from a
MapServer-based WCS (Web Coverage Service) source.

What you need:

* Python (obviously)

GDAL (for projecting the DEM, and creating the output data)
pyTerra (for requesting the DOQ from TerraServer)

OpenEV (to view your output)

Some strategerizing

All three of our data types - DEM, DOQ, and SRTM - need to be saved out to
Imagine (HFA) format in the same coordinate system as the extent that we’ll

specify. Even though we’re hacking, a little object-orient design could save us
some time. One thing to notice is that each of the data types is given the same

starting point - an extent, and each has the same end point - saved to an Imagine
tile.

The part that is different for each of the three data types is how the data are
actually gotten. If we create a class that can be subclassed for each of the three
types, we only have to implement the part that gets the data in each.

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 2

Remote DEM and DOQ 6/16/2005
Remote

Bemote - g extent
init__()
llﬁlll — pr—— '

BVAV get()
H,f‘f \“x\ save()
e e
e e
ey
/’f e
‘ DEM ‘ ‘ DOQ ‘ ‘ SRTM ‘

Figure 1. The Remote class implements the three methods - __init_, get, and
save - that each of the three data types need. We will subclass Remote for all
three and provide our own implementation of get() for each.

A smart extent object

To start, we need something that is a “smart” extent that knows how to project
itself. We will use a class to do this, and the class will take in minx, miny, maxx,
and maxy parameters on instantiation as well as an optional EPSG code telling
us which coordinate system the extent is in (defaulting to 4326). The Extent
object will provide a transform() method that can transform the extent into any
other coordinate system.

To make things a bit easier, we will make a class called SmartExtent that will
store both the forward and inverse extents to make it easy to get both the
projected and unprojected coordinates.

Extent SmartExtent
minx
miny forward inverse
maxx minx minx
maxy miny miny
tranform() maxx maxx
maxy maxy
tranform() tranformiy)

Figure 2. Extent and SmartExtent objects. The SmartExtent object just acts
as a container and takes care of calling the transform() method for us.

Howard Butler and Sean Gilles
©Howard Butler

Open Source Geospatial '05
June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Remote DEM and DOQ 6/16/2005

1 class Extent (object) :

2 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :

3 self.epsgcode = epsgcode

4 self.minx = minx

5 self.maxx = maxx

6 self.miny = miny

i self.maxy = maxy

8 def transform(self, target epsg code):

9 mins = ogr.Geometry (type=ogr.wkbPoint)

10 maxs = mins.Clone ()

11

12 mins.AddPoint (self.minx, self.miny)

13 maxs.AddPoint (self.maxx, self.maxy)

14 ref = osr.SpatialReference ()

15 ref.ImportFromEPSG (self.epsgcode)

16 maxs.AssignSpatialReference (ref)

17 mins.AssignSpatialReference (ref)

18 out ref = osr.SpatialReference ()

19 out ref.ImportFromEPSG (target epsg code)

20 £t mins = mins.Clone ()

21 t mins.TransformTo (out ref)

22 t maxs = maxs.Clone ()

23 t maxs.TransformTo (out ref)

24 ext = Extent (t mins.GetX (), t mins.GetY(),

25 t maxs.GetX (), t maxs.GetY(),

26 epsgcode = target epsg code)

27 return ext
We'll use the SmartExtent object to act as a container for our transformed extents.

28 class SmartExtent (object) :

29 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :

30 self.epsgcode = epsgcode

31 self.forward = Extent (minx, miny, maxx, maxy, epsgcode)

32 self.inverse = self.forward.transform(4326)
Next, the instance needs to know how return the transformed (in 4326)
coordinates whenever we try to get the string representation of it (this way we
can easily substitute it into the URL for the area-of-interest query).

33 def str (self):

34 outstring = "%s,%s,%s,%s"

35 return outstring % (self.inverse.maxy, self.inverse.miny,

36 self.inverse.maxx, self.inverse.minx)
Some test code

37 minx = 437142.35

38 miny = 4658582.96

39 maxx = 436521.25

40 maxy = 4659253.80

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 4

Remote DEM and DOQ 6/16/2005

541 extent = SmartExtent (minx, miny, maxx, maxy, epsgcode=26915)

542 print extent

543 >> 42.0827943476,42.0768029037,-93.7674817555,-93.759900979
Now that we have a smart extent, we can input a bounding box in whatever
projection system we need. The advantages of doing it this way instead of just
using a simple lat/lon box are twofold. First, if we need to, we can reuse this
extent and add more smarts to it when we need to (and will for downloading the
TerraServer imagery). Second, providing the convenience of an auto-projecting
extent protects our little application from changes in requirements up the line.
That way, when your boss asks, “Can I feed this a Lambert Conformal Conic
extent instead?”, you'll be ready for it.
The super class’s save() method
While each subclass implements its own get() method, the Remote class will be the
one implementing the save() method so that each of the three data types will
behave similarly. It also defines the __init_ () method that takes in one of our
extents.
One thing to note here is that the save() method takes care to get the projection
information from the native-format files that the get() method returns. It also
makes sure that the raster is projected into the coordinate system that was given
in the extent.

44 class Remote (object) :

45 def init (self, extent):

46 self.extent = extent

477

48 def get(self):

49 pass

50

51 def save (self, filename) :

52

53 infile = self.get()

54

55 o = gdal.OpenShared(infile)

56 dst driver = gdal.GetDriverByName ('HFA'")

57 outref = osr.SpatialReference ()

58 outref.ImportFromEPSG (self.extent.epsgcode)

59 dst wkt = outref.ExportToWkt ()

60 inref = osr.SpatialReference ()

61

62 can_import = inref.ImportFromWkt (o.GetProjection())

63 if can import != O:

04 inref.ImportFromEPSG (4326)

65 src_wkt = inref.ExportToWkt ()

66

67

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 5

Remote DEM and DOQ 6/16/2005
568 gdal.CreateAndReprojectImage (o,
69 filename,
.70 src_wkt = src wkt,
71 dst driver=dst driver,
72 dst_wkt=dst wkt)
Getting the DOQ
The work of getting the DOQ from TerraServer has already been done for us.
The pyTerra (http:/ /hobu.biz/software/pyTerra/) library has a class called
Terralmage that does all of the work that we implemented in the get() method of
RemoteDEM. All we need to do is to create a get() method that does the work of
downloading the TerraServer image, setting the coordinate system to the
coordinate system (UTM zone) that TerraServer gave us, and return the filename
back to the instance so that the save() method can pick it up and reproject it into
the our coordinate system of choice.
There is one complication, however. The Terralmage class of pyTerra requires
that the UTM zone also be given with the request. Because we made the “smart”
extent, providing this won’t be too hard. The smart extent already contains the
information we need (the longitude) to calculate a UTM zone in its t_mins and
t_maxs attributes. We can use these attributes and a lookup dictionary to find
the UTM zone of the extent. If the extent crosses two UTM zones, nothing is
returned (TerraServer can’t process requests across UTM zones in a single pass
anyway).
73 class SmartExtent (object) :
4 .
75 def get zone (self):
76 zones = {10:[-126,-120],
77 11:[-120,-1147,
78 12:[-114,-108],
79 132 [=108,=1021 ,
80 14:[- 102 =961 ,
81 152 [[= =907 ,
82 16sg [[= 90 -84],
83 17:[-84,-78],
84 18 [=78,=T21,
85 192 [=72,=661],
86 20:[-66,-60]
87 }
88
89 minx = self.inverse.minx
90 maxx = self.inverse.maxx
91 for 1 in zones:
92 #build the epsg code
93 min,max = map(float, zones[i])
94 if minx > min and minx < max:
95 min utmzone = 26900+1
96 if maxx > min and maxx < max:
97 max utmzone = 26900+1
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6

Minneapolis, MN

Remote DEM and DOQ 6/16/2005
598 if min utmzone == max utmzone:
99 return min_ utmzone
100 else:
2101 return None
In our get() method, we set all of the information needed for the Terralmage
instance and save the JPEG and worldfile into the temporary directory, open it
with GDAL, convert it to a GeoTIFF, and add the coordinate reference. The
save() method will then pick this up when reprojecting the DOQ into the
coordinate system that we defined in our extent.
102 class DOQ (Remote) :
103
104 def get (self):
105 thescale = 'Scalelm' # scale of the DOQ from TS
106 thetype = 'Photo'# Photo or Topo
107
108 # a Terralmage must know its zone
109 thezone = self.extent.get zone() - 26900
110 upperleft = Terralmage.point (self.extent.inverse.maxy,
111 self.extent.inverse.minx)
112 lowerRight = Terralmage.point (self.extent.inverse.miny,
113 self.extent.inverse.maxx)
114
115 ti = Terralmage.Terralmage (upperleft,
116 lowerRight,
117 thescale,
118 thetype,
119 thezone)
120 self.ti = ti
121 temp filename = os.path.join(temp dir, get timestamp()) + '.Jjpg'
122 self.ti.write(temp filename)
123 self.ti.write worldfile(temp filename+"w")
124
125 ds = gdal.Open (temp filename)
126 drv = gdal.GetDriverByName ('GTiff"')
127 tiff filename = temp filename.replace('.jpg','.tiff")
128 tiff ds = drv.CreateCopy (tiff filename, ds)
129 ref = osr.SpatialReference ()
130 ref.ImportFromEPSG (self.extent.epsgcode)
131 tiff ds.SetProjection(ref.ExportToWkt ())
132
133 return tiff filename
The usage of this class is a simple, two-line call:
134 dog = DOQ (extent)
135 dog.save (r'C:\temp\dog.img"')
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Open Source Python GIS Hacks Page: 7
Remote DEM and DOQ 6/16/2005

Getting the SRTM data

As of MapServer 4.4, support for WCS (Web Coverage Service) is available.
Whereas WMS provides a rendered map image, WCS allows a requestor to
obtain the actual raw raster data through a structured URL request. Frank
Warmerdam provides the SRTM (Shuttle Radar Topography Mission) through a
WCS service at http://maps.gdal.org . Here is an example of the “Capabilities”
request that you can use to find out more information about a WCS server - in
our case Frank’s.

5136 http://maps.gdal.org/cgi-
5 bin/mapserv_dem?&version=1.0.0&service=WCS&request=GetCapabilities

Hitting this URL in our web browser, we can see that there is one layer, called
srtmplus_raw, which appears to have what we want.

Next, we'll use a DescribeCoverage method to find out more information about the
layer.

5137 http://maps.gdal.org/cgi-
5 bin/mapserv_dem?&version=1.0.0&service=WCS&request=DescribeCoverage&layer=s
rtmplus raw 5

The XML listing of this request shows us that that the layer is provided in the
EPSG:4326 and EPSG:4269 coordinate systems, has an output format of
GEOTIFF_INT16, and has a resolution of 0.00833333 degrees per pixel.

With this information in hand, we have enough information to build a Python
class to do the work of downloading the image for us. We’ve already done most
of the work, however. The RemoteDEM class already defines a way to take in an
extent, and turn a temporary GDAL DataSet into a projected Imagine file.

All our RemoteSRTM class needs to define is the _save_tempfile() method. This
method needs to formulate the request, download it, and save it to a temporary

file.

138 class RemoteSRTM (RemoteDEM) :

139 def get(self):

140 url = 'http://maps.gdal.org/cgi-
bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus raw&version=1.0.0&service=
WCS&request=GetCoverages&bbox=%s&width=100&height=100&format=GEOTIFF INT16'

141

142 extent string = '$s,%s,%s,%s' % (self.extent.t mins.GetX(),

143 self.extent.t mins.GetY(),

144 self.extent.t maxs.GetX(),

145 self.extent.t maxs.GetY ()

146)

147 url = url % extent string

148 response = urllib2.urlopen (url)

149

150 astring = response.read/()

151

152 temp filename = os.path.join(temp dir, get timestamp()) + '.tiff'

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 8

Remote DEM and DOQ 6/16/2005
153 fo = open(temp filename, 'wb')
154 fo.write (astring)
155 fo.close ()
156 return temp filename

USGS NED DEM

USGS provides one product of digital elevation models called the NED (National
Elevation Dataset) on their website at http://seamless.usgs.gov. The user
interface for requesting DEMs is pretty clunky, but it amounts to manually
defining an area of interest, choosing the “Download” link, waiting in a queue,
and then saving the zip file of the DEM on your local machine.

Python provides excellent capabilities for working with URLs in the standard
libraries urllib and urllib2. We can use urllib2 and cookielib (another standard
library as of Python 2.4) to simulate the user requesting an area of interest,
waiting in the queue, and saving the resulting zip file on the local file system.

We need to make a series of requests to the USGS site to simulate a user doing
the same thing. The first request asks the USGS for a session, tells the site which
area of interest we want, and returns us the session cookie that we will use for
subsequent requests. The second request actually puts us in the queue. The final
series of requests asks the website if our data is ready every 10 seconds, and
when it is, downloads the data to our local machine.

Y Y
Start
Fut ourselves
- - Download zip file

in the gueue

Extent Object i

l

Request DEM

[

Is our
response a
zip file?

Yes

Figure 3. A process diagram of requesting a DEM from the USGS site.

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 9
Remote DEM and DOQ 6/16/2005

Download and save the DEM

Now we need to make a class that will model the behavior of our remote DEM
from the USGS site. Looking at Figure 3, we can see that we will want to feed
this class one of our custom extent objects. Once returned, the DEM will be a
binary Arc/Info coverage that is stored in a zip file. We will then need some
methods to both get the DEM and save it to a temp directory that we can then
use to create our shaded DOQ.

The __init__ method of our DEM (subclassed from Remote) class will take in our
custom extent. All of the specific implementation exists in the get() method, and
it does all of the work of actually getting the DEM from the USGS site.

Create temp Open the Arc/Info
Download zip file - directary in ™| coverage as a
STEMP GDALDataset

FProject the Arc/
Info coverage and
| save
Y Y

Save zip file in a Extract Arc/info Grab the H'_.A

Ly — driver and defing

cStringlO coverage

coordinate refs

Figure 4. get() method of DEM (continued).

157 class DEM (Remote) :

158 def get(self):

159 self.add to queue ()

160 self.download/()

161 temp file = self.write temp file()
162 return temp file

The get() method of DEM is really just a driver function. The main pieces of
requesting, downloading, and saving a DEM from the USGS site are
implemented separately to make things a bit easier to read, break up the code,
and allow us to make localized changes if the USGS changes their site (which
they did at least once while I was writing this exercise).

The add_to_queue() method makes the initial request to the USGS site and gives it
our extent, gets a cookie (done automatically by cookielib), and returns our place
in the queue.

163 def add to queue (self) :

164
165 url =
'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NEDO1HZ' 5
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 10

Remote DEM and DOQ 6/16/2005
166 url = url % (self.extent)
167
168 req = urllib2.Request (url)
169 handle = urllib2.urlopen (req)
170
171 url =
'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus n
ed&msd=NED.CONUS_NED_METADATA&Zun=METERS&prj=O&csx=2.777777777999431E—
4&csy=2.777777777999431E-4&bnd=&bndnm="
172
173 url = url % (self.extent.inverse.minx,
174 self.extent.inverse.maxx,
175 self.extent.inverse.maxy,
176 self.extent.inverse.miny)
177
178 reg2 = urllib2.Request (url)
179 handle = urllib2.urlopen (reg2)
180 self.handle = handle
Now that we’re in the queue, we need a method to actually wait in the queue,
make a request to the website to ask if it is done with our DEM every 10 seconds,
and download the zip file with our data. The download() method does this.
Instead of saving the data to a file, however, we will be storing it in a cStringlO
instance. You can think of this as a string buffer. By storing it here, it will be in
memory with our instance. We are using this because we want our
write_temp_file() method to actually extract the stuff out of the zip file and return
its location to the caller so that the save() method can do what it needs.
181 def download(self):
182 if debug:
183 print 'requesting DEM download...'
184
185 # ask forever until the website returns
186 # application/x-zip-compressed as the content type
187 # I've had this go for over an hour sometimes.
188 wait, newurl = self.handle.info () ['refresh'].split(';")
189 newurl = newurl.replace('URL="',"'"').strip()
190 url2 = 'http://extract.cr.usgs.gov%s'S%newurl
191 while 1:
192
193 time.sleep (int (wait))
194 request = urllib2.Request (url?2)
195 response = urllib2.urlopen (request)
196
197 if 'text/html' not in response.info () ['content-type']:
198 if debug:
199 print "it's our turn... downloading DEM..."
200 output = response.read()
201 break
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 11

Remote DEM and DOQ 6/16/2005

202 else:

203 if debug:

204 print 'still in the queue. requesting again... '

205

206 zip output = cStringIO.StringIO ()

207 zip output.write (output)

208 self.zip output = zip output
Python comes with the module zipfile as a standard library, and we’ll now use
that help us implement the write_temp_file() method. This method does all of the
mundane business of extracting the Arc/Info coverage out to a temporary file
and returning the location of the file to the caller.

209 def write temp file(self):

210 # reset the cStringIO to read at the beginning

211 self.zip output.reset ()

212

213 # make a temp directory in STEMP

214 temp filename = get timestamp ()

215 outdir = os.path.join(temp dir, temp filename)

216 os.mkdir (outdir)

217

218 # the arcinfo files use the *opposite* path separator than

219 # than the system's.

220 if os.sep == '"\\':

221 info separator = '/'

222 else:

223 info separator = '\\'

224

225 # extract the info coverage into the temp directory

226 z = zipfile.ZipFile(self.zip output)

227 arcinfo dir = z.filelist[0].filename.split(info separator) [0]

228 tempdir = os.path.join(outdir, arcinfo dir)

229 os.mkdir (tempdir)

230 tempdir = os.path.join(outdir, arcinfo dir, arcinfo dir)

231 os.mkdir (tempdir)

232 tempdir = os.path.join (outdir, arcinfo dir, 'info')

233 os.mkdir (tempdir)

234

235 for name in z.namelist () :

236 outfile = open(os.path.join (outdir, name), 'wb')

237 outfile.write (z.read (name))

238 outfile.flush ()

239 outfile.close()

240

241 # USGS's zipfile buries the data in another arcinfo directory

242 # so we have to use two

243 infile = os.path.join(outdir,arcinfo dir,arcinfo dir)

244 return infile

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks
Remote DEM and DOQ

Page: 12
6/16,/2005

Finally, here’s how we use the DEM class...

245
246
247
248
249
250
251
252
253
254
255
256

maxx = 437142.35

miny = 4658582.96

minx = 436521.25

maxy = 4659253.80

extent = Extent (minx, miny, maxx, maxy, epsgcode=26915)
print extent

dem = DEM(extent)

dem.save (r'c:\temp\dem.img')
42.0828443199,42.076752942,-93.7599730671,-93.7674089552
requesting DEM download...

still in the queue. requesting again...

it's our turn... downloading DEM.. .

Howard Butler and Sean Gilles Open Source Geospatial '05

©Howard Butler

June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 13
Remote DEM and DOQ 6/16/2005

Code Listing

1 import gdal.ogr as ogr

2 import gdal.osr as osr

3 import gdal.gdal as gdal

4

5 import cookielib

6 import urllib2

i import cStringIO

8 import zipfile

9

10

11 from pyTS import Terralmage

12 from pyTS import pyTerra

13

14 import os

15 import sys

16 import time

17

18 debug =1

19 cookiejar = cookielib.LWPCookieJar ()

20 opener = urllib2.build opener (urllib2.HTTPCookieProcessor (cookiejar))

21 urllib2.install opener (opener)

22

23 temp dir= os.environ['TEMP']

24

25 def get timestamp():

26 """returns a big, unique, string that we can use for nonsensical
filenames"""

277 import mdb5

28 g = md5.md5 (str(time.time()))

29 return g.hexdigest ()

30

31 class Extent (object) :

32 """An extent that can transform itself into other coordinate systems"""

33 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :

34 """MapServer-style... minx, miny, maxx, maxy, with an optional
epsgcode

35 defaults to EPSG:4326"""

36 self.epsgcode = epsgcode

37 self.minx = minx

38 self.maxx = maxx

39 self.miny = miny

40 self.maxy = maxy

41 def transform(self, target epsg code):

42 """Transforms the extent into the target EPSG code and returns
ig.mmn

43 mins = ogr.Geometry (type=ogr.wkbPoint)

44 maxs = mins.Clone ()

45

46 mins.AddPoint (self.minx, self.miny)

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 14

Remote DEM and DOQ 6/16/2005
477 maxs.AddPoint (self.maxx, self.maxy)
48 ref = osr.SpatialReference ()
49 ref.ImportFromEPSG (self.epsgcode)
50 maxs.AssignSpatialReference (ref)
51 mins.AssignSpatialReference (ref)
52 out ref = osr.SpatialReference ()
53 out ref.ImportFromEPSG (target epsg code)
54 £t mins = mins.Clone ()
55 t mins.TransformTo (out ref)
56 t maxs = maxs.Clone ()
57 t maxs.TransformTo (out ref)
58 ext = Extent (t mins.GetX (), t mins.GetY(),
59 t maxs.GetX (), t maxs.GetY(),
60 epsgcode = target epsg code)
61 return ext
62
63
64
65 class SmartExtent (object) :
66 """A class that acts as a container for our extents by storing the
67 forward and inverse projections.”"""
68 def init (self, minx, miny, maxx, maxy, epsgcode=4326) :
69 """MapServer-style... minx, miny, maxx, maxy, with an optional
epsgcode
70 defaults to EPSG:4326"""
71 self.epsgcode = epsgcode
72 self.forward = Extent (minx, miny, maxx, maxy, epsgcode)
73 self.inverse = self.forward.transform(4326)
74
75 def str (self):
76 """Prints out the inverse extent in the form that the USGS site
needs."""
77 outstring = "%s,%s,%s,%s"
78 return outstring % (self.inverse.maxy, self.inverse.miny,
79 self.inverse.maxx, self.inverse.minx)
80
81 def get zone (self):
82 """Returns the UTM zone of the extent."""
83 zones = {10:[-126,-120],
84 11:[-120,-114],
85 12:[-114,-108],
86 13:[-108,-102],
87 14:[- 102 =961 ,
88 155 [=96,=90],
89 16:[-90,-84],
90 17:[-84,-781,
91 18:[-78,-721,
92 19:[-72,-66],
93 20:[-66,-60]
94 }
95
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 15

Remote DEM and DOQ 6/16/2005
96 minx = self.inverse.minx
97 maxx = self.inverse.maxx
98 for 1 in zones:
99 #build the epsg code
100 min,max = map(float, zones[i])
101 if minx > min and minx < max:
102 min utmzone = 26900+1
103 if maxx > min and maxx < max:
104 max utmzone = 26900+1
105 if min utmzone == max utmzone:
106 return min utmzone
107 else:
108 return None
109
110
111 class Remote (object) :
112 """A super class that defines the input for the three data types."""
113 def 1init (self, extent):
114 """Take in one of our SmartExtent objects.”"""
115 self.extent = extent
116
117 def get (self):
118 """Dummy method. Should not be called directly."""
119 pass
120
121 def save (self, filename) :
122 """Saves the given filename in the coordinate system that
123 was given by the SmartExtent.”"""
124 infile = self.get ()
125
126 o = gdal.OpenShared(infile)
127 dst driver = gdal.GetDriverByName ('HFA'")
128 outref = osr.SpatialReference ()
129 outref.ImportFromEPSG (self.extent.epsgcode)
130 dst wkt = outref.ExportToWkt ()
131 inref = osr.SpatialReference ()
132
133 can_import = inref.ImportFromWkt (o.GetProjection())
134 if can import != O:
135 inref.ImportFromEPSG (4326)
136 src_wkt = inref.ExportToWkt ()
137
138 gdal.CreateAndReprojectImage (o,
139 filename,
140 src_wkt = src wkt,
141 dst driver=dst driver,
142 dst wkt=dst wkt)
143
144 class DEM(Remote) :
145 """A class to get DEMs from the USGS Seamless site at
146 http://seamless.usgs.gov"""
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 16
Remote DEM and DOQ 6/16/2005

147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

def get (self):
"""Returns the downloaded file for the save () method"""
self.add to queue /()
self.download ()
temp file = self.write temp file()
return temp file

def add to queue (self):
"""Adds our request for a DEM to the USGS queue."""
url =
'http://extract.cr.usgs.gov/Website/distreq/RequestSummary.jsp?AL=%s&PR=0&P
L=NEDO1HZ'
url = url % (self.extent)

req = urllib2.Request (url)
handle = urllib2.urlopen (req)

url =
'http://extract.cr.usgs.gov/diststatus/servlet/gov.usgs.edc.RequestStatus?s
iz=1&key=NED&ras=1&rsp=1l&pfm=GridFloat&lay=-1&fid=-
1&lft=%s&rgt=%s&top=%s&bot=%s&wmd=1&mcd=NED&mdf=TXT&arc=ZIP&sde=NED.conus n
ed&émsd=NED.CONUS NED METADATA&zun=METERS&prj=0&csx=2.777777777999431E-
4&csy=2.777777777999431E-4&bnd=&bndnm="
url = url % (self.extent.inverse.minx,
self.extent.inverse.maxx,
self.extent.inverse.maxy,
self.extent.inverse.miny)

reg2 = urllib2.Request (url)
handle = urllib2.urlopen (reg2)
self.handle = handle

def download(self) :
"""Waits in the USGS queue and downloads the DEM in
Arc/Info format when it is our turn."""
if debug:
print 'requesting DEM download...'

ask forever until the website returns
application/x-zip-compressed as the content type
I've had this go for over an hour sometimes.

wait, newurl = self.handle.info () ['refresh'].split(';")
newurl = newurl.replace('URL="',"'"').strip()

url2 = 'http://extract.cr.usgs.gov%s'S%newurl

while 1:

time.sleep (int (wait))
request = urllib2.Request (url?2)
response = urllib2.urlopen (request)

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

Open Source Python GIS Hacks Page: 17

Remote DEM and DOQ 6/16/2005

191 if '"text/html' not in response.info () ['content-type']:

192 if debug:

193 print "it's our turn... downloading DEM..."

194 output = response.read()

195 break

196 else:

197 if debug:

198 print 'still in the queue. requesting again... '

199

200 zip output = cStringIO.StringIO ()

201 zip output.write (output)

202 self.zip output = zip output

203

204 def write temp file(self):

205 """Writes out the file given by the download() method

206 in a temporary directory and returns the location to the

207 caller."""

208 # reset the cStringIO to read at the beginning

209 self.zip output.reset ()

210

211 # make a temp directory in STEMP

212 temp filename = get timestamp ()

213 outdir = os.path.join(temp dir, temp filename)

214 os.mkdir (outdir)

215

216 # the arcinfo files use the *opposite* path separator than

217 # than the system's.

218 if os.sep == '"\\':

219 info separator = '/'

220 else:

221 info separator = '\\'

222

223 # extract the info coverage into the temp directory

224 z = zipfile.ZipFile(self.zip output)

225 arcinfo dir = z.filelist[0].filename.split(info separator) [0]

226 tempdir = os.path.join(outdir, arcinfo dir)

2277 os.mkdir (tempdir)

228 tempdir = os.path.join(outdir, arcinfo dir, arcinfo dir)

229 os.mkdir (tempdir)

230 tempdir = os.path.join(outdir, arcinfo dir, 'info')

231 os.mkdir (tempdir)

232

233 for name in z.namelist () :

234 outfile = open(os.path.join (outdir, name), 'wb')

235 outfile.write (z.read (name))

236 outfile.flush ()

237 outfile.close()

238

239 # USGS's zipfile buries the data in another arcinfo directory

240 # so we have to use two

241 infile = os.path.join(outdir,arcinfo dir,arcinfo dir)
Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 18

Remote DEM and DOQ 6/16/2005

242 return infile

243

244

245

246

247 class DOQ (Remote) :

248 """A class that implements getting a DOQ from the Microsoft

249 TerraServer."""

250 def get(self):

251 """Returns the downloaded file for the save () method"""

252 thescale = 'Scalelm' # scale of the DOQ from TS

253 thetype = 'Photo'# Photo or Topo

254

255 # a Terralmage must know its zone

256 thezone = self.extent.get zone() - 26900

257 upperleft = Terralmage.point (self.extent.inverse.maxy,

258 self.extent.inverse.minx)

259 lowerRight = TerralImage.point (self.extent.inverse.miny,

260 self.extent.inverse.maxx)

261

262 ti = Terralmage.Terralmage (upperleft,

263 lowerRight,

264 thescale,

265 thetype,

266 thezone)

267 self.ti = ti

268 temp filename = os.path.join(temp dir, get timestamp()) + '.Jjpg'

269 self.ti.write(temp filename)

270 self.ti.write worldfile(temp filename+"w")

271

272 ds = gdal.Open (temp filename)

273 drv = gdal.GetDriverByName ('GTiff"')

274 tiff filename = temp filename.replace('.jpg','.tiff")

275 tiff ds = drv.CreateCopy (tiff filename, ds)

276 ref = osr.SpatialReference ()

277 ref.ImportFromEPSG (self.extent.epsgcode)

278 tiff ds.SetProjection(ref.ExportToWkt ())

279

280 return tiff filename

281

282 class SRTM (Remote) :

283 """A class that implements getting the SRTM data from the

284 WCS server at http://maps.gdal.org"""

285 def get(self):

286 """Returns the downloaded file for the save () method"""

287 url = 'http://maps.gdal.org/cgi-
bin/mapserv_dem?&crs=EPSG:4326&coverage=srtmplus raw&version=1.0.0&service=
WCS&request=GetCoverage&bbox=%s&width=100&height=100&format=GEOTIFF INT16'

288

289 extent string = '$s,%s,%s,%s' % (self.extent.inverse.minx,

290 self.extent.inverse.miny,

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 19

Remote DEM and DOQ 6/16/2005
291 self.extent.inverse.maxx,
292 self.extent.inverse.maxy
293)
294 url = url % extent string
295 response = urllib2.urlopen (url)
296
297 astring = response.read()
298
299 temp filename = os.path.join(temp dir, get timestamp()) + '.tiff'
300 fo = open(temp filename, 'wb')
301 fo.write (astring)
302 fo.close ()
303 return temp filename
304

305 maxx = 437142.35

306 miny = 4658582.96

307 minx = 436521.25

308 maxy = 4659253.80

309 extent = SmartExtent (minx, miny, maxx, maxy, epsgcode=26915)
310 print extent

311 dem = DEM(extent)

312 dem.save (r'c:\temp\usgs.img')
313 dog = DOQ (extent)

314 dog.save (r'C:\temp\dog.img"')
315 srtm = SRTM (extent)

316 srtm.save(r'c:\temp\srtm.img')

Howard Butler and Sean Gilles Open Source Geospatial '05
©Howard Butler June 16-18, 2005
Minneapolis, MN

